Home     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Astro Photo     The Collection     Forum     Blog New!     FAQ     Login  

16 Cyg


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

The Effects of Multiple Companions on the Efficiency of Space Interferometry Mission Planet Searches
The Space Interferometry Mission (SIM) is expected to make preciseastrometric measurements that can be used to detect low-mass planetsaround nearby stars. Since most nearby stars are members ofmultiple-star systems, many of them will have a measurable accelerationdue to their companion, which must be included when solving forastrometric parameters and searching for planetary perturbations. Inaddition, many of the stars with one radial velocity planet showindications of additional planets. Therefore, astrometric surveys suchas SIM must be capable of detecting planets and measuring orbitalparameters in systems with multiple stellar and/or planetary companions.We have conducted Monte Carlo simulations to investigate how thepresence of multiple companions affects the sensitivity of anastrometric survey such as SIM. We find that the detection efficiencyfor planets in wide binary systems is relatively unaffected by thepresence of a binary companion if the planetary orbital period is lessthan half the duration of the astrometric survey. For longer orbitalperiods, there are significant reductions in the sensitivity of anastrometric survey. In addition, we find that the signal required todetect a planet can be increased significantly due to the presence of anadditional planet orbiting the same star. Fortunately, adding a modestnumber of precision radial velocity observations significantly improvesthe sensitivity for many multiple-planet systems. Thus, the combinationof radial velocity observations and astrometric observations by SIM willbe particularly valuable for studying multiple-planet systems.

Two Suns in The Sky: Stellar Multiplicity in Exoplanet Systems
We present results of a reconnaissance for stellar companions to all 131radial velocity-detected candidate extrasolar planetary systems known asof 2005 July 1. Common proper-motion companions were investigated usingthe multiepoch STScI Digitized Sky Surveys and confirmed by matching thetrigonometric parallax distances of the primaries to companion distancesestimated photometrically. We also attempt to confirm or refutecompanions listed in the Washington Double Star Catalog, in the Catalogsof Nearby Stars Series by Gliese and Jahreiß, in Hipparcosresults, and in Duquennoy & Mayor's radial velocity survey. Ourfindings indicate that a lower limit of 30 (23%) of the 131 exoplanetsystems have stellar companions. We report new stellar companions to HD38529 and HD 188015 and a new candidate companion to HD 169830. Weconfirm many previously reported stellar companions, including six starsin five systems, that are recognized for the first time as companions toexoplanet hosts. We have found evidence that 20 entries in theWashington Double Star Catalog are not gravitationally bound companions.At least three (HD 178911, 16 Cyg B, and HD 219449), and possibly five(including HD 41004 and HD 38529), of the exoplanet systems reside intriple-star systems. Three exoplanet systems (GJ 86, HD 41004, andγ Cep) have potentially close-in stellar companions, with planetsat roughly Mercury-Mars distances from the host star and stellarcompanions at projected separations of ~20 AU, similar to the Sun-Uranusdistance. Finally, two of the exoplanet systems contain white dwarfcompanions. This comprehensive assessment of exoplanet systems indicatesthat solar systems are found in a variety of stellar multiplicityenvironments-singles, binaries, and triples-and that planets survive thepost-main-sequence evolution of companion stars.

Dynamical Stability and Habitability of the γ Cephei Binary-Planetary System
It has been suggested that the long-lived residual radial velocityvariations observed in the precision radial velocity measurements of theprimary of γ Cephei (HR 8974, HD 222404, HIP 116727) are likelydue to a Jupiter-like planet orbiting this star. In this paper, thedynamics of this planet is studied, and the possibility of the existenceof a terrestrial planet around its central star is discussed.Simulations, which have been carried out for different values of theeccentricity and semimajor axis of the binary, as well as the orbitalinclination of its Jupiter-like planet, expand on previous studies ofthis system and indicate that, for the values of the binary eccentricitysmaller than 0.5, and for all values of the orbital inclination of theJupiter-like planet ranging from 0° to 40°, the orbit of thisplanet is stable. For larger values of the binary eccentricity, thesystem becomes gradually unstable. Integrations also indicate that,within this range of orbital parameters, a terrestrial planet, such asan Earth-like object, can have a long-term stable orbit only atdistances of 0.3-0.8 AU from the primary star. The habitable zone of theprimary, at a range of approximately 3.05-3.7 AU, is, however, unstable.

Frequency of Debris Disks around Solar-Type Stars: First Results from a Spitzer MIPS Survey
We have searched for infrared excesses around a well-defined sample of69 FGK main-sequence field stars. These stars were selected withoutregard to their age, metallicity, or any previous detection of IRexcess; they have a median age of ~4 Gyr. We have detected 70 μmexcesses around seven stars at the 3 σ confidence level. Thisextra emission is produced by cool material (<100 K) located beyond10 AU, well outside the ``habitable zones'' of these systems andconsistent with the presence of Kuiper Belt analogs with ~100 times moreemitting surface area than in our own planetary system. Only one star,HD 69830, shows excess emission at 24 μm, corresponding to dust withtemperatures >~300 K located inside of 1 AU. While debris disks withLdust/L*>=10-3 are rare around oldFGK stars, we find that the disk frequency increases from 2%+/-2% forLdust/L*>=10-4 to 12%+/-5% forLdust/L*>=10-5. This trend in thedisk luminosity distribution is consistent with the estimated dust inour solar system being within an order of magnitude greater or less thanthe typical level around similar nearby stars. Although there is nocorrelation of IR excess with metallicity or spectral type, there is aweak correlation with stellar age, with stars younger than a gigayearmore likely to have excess emission.

Detection Limits from the McDonald Observatory Planet Search Program
Based on the long-term radial velocity surveys carried out with theMcDonald Observatory 2.7 m Harlan J. Smith Telescope from 1988 to thepresent, we derive upper limits to long-period giant planet companionsfor 31 nearby stars. Data from three phases of the McDonald Observatory2.7 m planet-search program have been merged together, and for 17objects data from the pioneering Canada-France-Hawaii Telescope radialvelocity program have also been included in the companion-limitsdetermination. For those 17 objects, the baseline of observations is inexcess of 23 yr, enabling the detection or exclusion of giant planets inorbits beyond 8 AU. We also consider the possibility of eccentric orbitsin our computations. At an orbital separation of 5.2 AU, we can excludeon average planets of Msini>~(2.0+/-1.1)MJ (e=0) andMsini>~(4.0+/-2.8)MJ (e=0.6) for 25 of the 31 stars inthis survey. However, we are not yet able to rule out ``true Jupiters,''i.e., planets of Msini~1MJ in 5.2 AU orbits. These limits areof interest for the Space Interferometry Mission, Terrestrial PlanetFinder, and Darwin missions, which will search for terrestrial planetsorbiting nearby stars, many of which are included in this work.

Dwarfs in the Local Region
We present lithium, carbon, and oxygen abundance data for a sample ofnearby dwarfs-a total of 216 stars-including samples within 15 pc of theSun, as well as a sample of local close giant planet (CGP) hosts (55stars) and comparison stars. The spectroscopic data for this work have aresolution of R~60,000, a signal-to-noise ratio >150, and spectralcoverage from 475 to 685 nm. We have redetermined parameters and derivedadditional abundances (Z>10) for the CGP host and comparison samples.From our abundances for elements with Z>6 we determine the meanabundance of all elements in the CGP hosts to range from 0.1 to 0.2 dexhigher than nonhosts. However, when relative abundances ([x/Fe]) areconsidered we detect no differences in the samples. We find nodifference in the lithium contents of the hosts versus the nonhosts. Theplanet hosts appear to be the metal-rich extension of local regionabundances, and overall trends in the abundances are dominated byGalactic chemical evolution. A consideration of the kinematics of thesample shows that the planet hosts are spread through velocity space;they are not exclusively stars of the thin disk.

Prospects for brown dwarf and extrasolar planet research with the GTC and the LMT
The topic of brown dwarf and extrasolar planet research with the GTC andthe LMT was discussed during a half day workshop at Universidad NacionalAutonoma de Mexico. This paper summarizes the contributions presented atthat Workshop plus additional contributions from members of the SpanishNetwork for extrasolar planets. Specific observational projects, whichcan be carried out with the planned instruments for the GTC, includingfirst light ones, are explained in some detail. These projects are thefollowing: our coolest neighbors, brown dwarfs in wide binaries, browndwarfs and planetary mass objects in Orion, follow-up of transitingextrasolar planets and verification of planet candidates, the search forultracool companions to nearby stars, brown dwarf binaries and disksaround brown dwarfs.

Precise Differential Analysis of Stellar Metallicities: Application to Solar Analogs Including 16 Cyg A and B
A method is presented for very accurately establishing the differencesof the atmospheric parameters (the effective temperature, the surfacegravity, the microturbulent velocity, and the Fe abundance) between twosimilar stars by using the equivalent widths of Fe I and Fe II lines,which is a variant of the numerical solution-search approach developedby Takeda et al. (2002, PASJ, 54, 451), while being inspired by thespirit of the orthodox ``differential curve-of-growth'' procedure. Byapplying this technique to eight selected stars similar to the Sun [HD20630, 76151, 134987, 181655, 186408 (16 Cyg A), 186427 (16 Cyg B),195019, and 217014] along with the Sun itself, the parameter differencesbetween any pairs of these stars could be successfully determined toprecisions of ˜ 10 K (in ΔTeff), ˜ 0.02dex (inΔlog g), ˜0.02 km s-1 (in Δv t), and ˜0.01 dex (in ΔA Fe). Regarding 16 Cyg A and B, awell-known ``solar twin'' system where a planet has been detected onlyin B, the metallicities of these two components were concluded to beessentially the same to a level of ≲ 0.01 dex.

Lithium Abundances of F-, G-, and K-Type Stars: Profile-Fitting Analysis of the Li I 6708 Doublet
An extensive profile-fitting analysis was performed for the Li(+Fe)6707-6708Å feature of nearby 160 F-K dwarfs/subgiants (including27 planet-host stars) in the Galactic disk ( 7000 K ≳Teff ≳ 5000 K, -1 ≲ [Fe/H] ≲ +0.4), in orderto establish the photospheric lithium abundances of these stars. Thenon-LTE effect (though quantitatively insignificant) was taken intoaccount based on our statistical equilibrium calculations, which werecarried out on an adequate grid of models. Our results confirmed most ofthe interesting observational characteristics revealed by recentlypublished studies, such as the bimodal distribution of the Li abundancesfor stars at Teff ≳ 6000 K, the satisfactory agreementof the upper envelope of the A(Li) vs. [Fe/H] distribution with thetheoretical models, the existence of a positive correlation betweenA(Li) and the stellar mass, and the tendency of lower lithium abundancesof planet-host stars (as compared to stars without planets) at thenarrow ``transition'' region of 5900 K ≳ Teff ≳5800 K. The solar Li abundance derived from this analysis is 0.92 (H =12.00), which is by 0.24dex lower than the widely referenced standardvalue of 1.16.

Spectroscopic Study on the Atmospheric Parameters of Nearby F--K Dwarfs and Subgiants
Based on a collection of high-dispersion spectra obtained at OkayamaAstrophysical Observatory, the atmospheric parameters (Teff,log g, vt, and [Fe/H]) of 160 mid-F through early-K starswere extensively determined by the spectroscopic method using theequivalent widths of Fe I and Fe II lines along with the numericaltechnique of Takeda et al. (2002, PASJ, 54, 451). The results arecomprehensively discussed and compared with the parameter values derivedby different approaches (e.g., photometric colors, theoreticalevolutionary tracks, Hipparcos parallaxes, etc.) as well as with thepublished values found in various literature. It has been confirmed thatour purely spectroscopic approach yields fairly reliable and consistentresults.

The dependence of the Rossby number and XUV-Lyα emission flux with age for solar-like G-type stars
Stellar parameters of 11 G-type stars with ages ranging from 0.1 to 8.5Gyr, from the Sun in Time programme, were used to compute the Rossbynumber, ℜ, for each star. The Rossby number for each star wascalculated from the rotation period and the convective overturn timederived from spectral type (B-V). It was found to vary essentially ast0.5, where t is the stellar age in Gyr. The Rossby number isused as an index of X-ray-ultraviolet (XUV) (1-1200 Å) andLyα activity, defined as the ratio of the total emission flux inthese spectral regions to the total bolometric emission. Expressions forthe ratio of the stellar surface XUV and Lyα emission fluxrelative to present mean solar surface flux values are given in terms ofℜ. It is shown that the observed activity in these stars varies asℜ-β, where β takes values of 2.5 and 1.5 forXUV and Lyα, respectively. Expressions for deriving the Rossbynumber from B-V and age are also given. Thus, one can use the stellarB-V and effective temperature variation with age to calculate the XUVand Lyα emission flux relative to present solar values. As anexample, the evolution of the solar XUV and Lyα with age from 0.1to 8.5 Gyr is given. The variation of the stellar ultraviolet flux withage can be used in photochemical models to study the evolution ofplanetary atmospheres orbiting such stars.

A Differential Abundance Analysis of HD219175A and B
The abundances of the wide binary pair HD 219175 A and B are determinedand compared using a line-by-line differential analysis. No evidence fordifference has been found in the abundances of Fe, O, Na, Mg, Al, Si, K,Ca, Sc, Ti, V, Cr, Mn, Ni, Cu and Ba. Our results support a physicalrelation between the two components of HD 219175.

Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs
We present a uniform catalog of stellar properties for 1040 nearby F, G,and K stars that have been observed by the Keck, Lick, and AAT planetsearch programs. Fitting observed echelle spectra with synthetic spectrayielded effective temperature, surface gravity, metallicity, projectedrotational velocity, and abundances of the elements Na, Si, Ti, Fe, andNi, for every star in the catalog. Combining V-band photometry andHipparcos parallaxes with a bolometric correction based on thespectroscopic results yielded stellar luminosity, radius, and mass.Interpolating Yonsei-Yale isochrones to the luminosity, effectivetemperature, metallicity, and α-element enhancement of each staryielded a theoretical mass, radius, gravity, and age range for moststars in the catalog. Automated tools provide uniform results and makeanalysis of such a large sample practical. Our analysis method differsfrom traditional abundance analyses in that we fit the observed spectrumdirectly, rather than trying to match equivalent widths, and wedetermine effective temperature and surface gravity from the spectrumitself, rather than adopting values based on measured photometry orparallax. As part of our analysis, we determined a new relationshipbetween macroturbulence and effective temperature on the main sequence.Detailed error analysis revealed small systematic offsets with respectto the Sun and spurious abundance trends as a function of effectivetemperature that would be inobvious in smaller samples. We attempted toremove these errors by applying empirical corrections, achieving aprecision per spectrum of 44 K in effective temperature, 0.03 dex inmetallicity, 0.06 dex in the logarithm of gravity, and 0.5 kms-1 in projected rotational velocity. Comparisons withprevious studies show only small discrepancies. Our spectroscopicallydetermined masses have a median fractional precision of 15%, but theyare systematically 10% higher than masses obtained by interpolatingisochrones. Our spectroscopic radii have a median fractional precisionof 3%. Our ages from isochrones have a precision that variesdramatically with location in the Hertzsprung-Russell diagram. We planto extend the catalog by applying our automated analysis technique toother large stellar samples.

Spectroscopic Abundance Analysis of Dwarfs in the Young Open Cluster IC 4665
We report a detailed spectroscopic abundance analysis for a sample of 18F-K dwarfs of the young open cluster IC 4665. Stellar parameters andelement abundances of Li, O, Mg, Si, Ca, Ti, Cr, Fe, and Ni have beenderived using the spectroscopic synthesis tool SME (Spectroscopy MadeEasy). Within the measurement uncertainties the iron abundance isuniform, with a standard deviation of 0.04 dex. No correlation is foundbetween the iron abundance and the mass of the stellar convective zoneor between the Li abundance and the Fe abundance. In other words, ourresults do not reveal any signature of accretion and therefore do notsupport the scenario that stars with planets (SWPs) acquire theiron-average higher metallicity compared to field stars via accretion ofmetal-rich planetary material. Instead, the higher metallicity of SWPsmay simply reflect the fact that planetary formation is more efficientin high-metallicity environs. However, since so many details of theplanetary system formation processes remain poorly understood, furtherstudies are needed for a final settlement of the problem of the highmetallicity of SWPs. The standard deviation of [Fe/H] deduced from ourobservations, taken as an upper limit on the metallicity dispersionamong the IC 4665 member stars, has been used to constrainprotoplanetary disk evolution, terrestrial and giant planets formation,and evolution processes. The total reservoir of heavy elements retainedby the nascent disks is limited, and high retention efficiency ofplanet-building material is supported. Under modest surface density, gasgiant planets are expected to form in locally enhanced regions or startefficient gas accretion when they only have a small core of a few Earthmasses. Our results do not support the possibility that the migration ofgas giants and the circularization of terrestrial planets' orbits areregulated by their interaction with a residual population ofplanetesimals and dust particles.

Stellar activity cycles: observing the dynamo?
The enormous complexity of the atmospheric structure observed on the Sunmakes it very difficult to compare the Sun with ``solar-type stars''.Clearly, we need to identify parameters that can be observed on the Sunas well as on other stars which can be interpreted unambiguously. Themost widely accepted dynamo signature is the presence of an activitycycle, well documented for the Sun and for main-sequence stars due tothe Mount Wilson Ca II H&K project. Only recently have we detectedspatial information, differential rotation and possibly meridional flowson other stars and thereby adding another constraint for itsinterpretation within a dynamo theory. Again, the picture is notcomplete yet, despite that there is just a single main ingredient thatacts as the driving mechanism for activity in all atmospheric layers andthe convective envelope of a solar-type star: the dynamo-relatedmagnetic field. I stress the importance of mapping stellar surfaces asfingerprints of the underlying dynamo action over long periods of time.

Four new wide binaries among exoplanet host stars
In our ongoing survey for wide (sub)stellar companions of exoplanet hoststars we have found 4 new co-moving stellar companions of the stars HD114729, HD 16141, HD 196050 and HD 213240 with projected separationsfrom 223 up to 3898 AU. The companionship of HD 114729 B, HD 196050 Band HD 213240 C is confirmed by photometry and spectroscopy, all beingearly M dwarfs. The masses of the detected companions are derived fromtheir infrared JHK magnitudes and range between 0.146 and 0.363Mȯ. Our first and second epoch observations can rule outadditional stellar companions around the primaries from 200 up to 2400AU ({S/N}=10). In our survey we have found so far 6 new binaries amongthe exoplanet host stars. According to these new detections, thereported differences between single-star and binary-star planets withorbital periods short than 40 days remain significant in both themass-period and eccentricity-period distribution. In contrast, allexoplanets with orbital periods longer than 100 days tend to displaysimilar distributions.

Abundance trends in kinematical groups of the Milky Way's disk
We have compiled a large catalogue of metallicities and abundance ratiosfrom the literature in order to investigate abundance trends of severalalpha and iron peak elements in the thin disk and the thick disk of theGalaxy. The catalogue includes 743 stars with abundances of Fe, O, Mg,Ca, Ti, Si, Na, Ni and Al in the metallicity range -1.30 < [Fe/H]< +0.50. We have checked that systematic differences betweenabundances measured in the different studies were lower than randomerrors before combining them. Accurate distances and proper motions fromHipparcos and radial velocities from several sources have been retreivedfor 639 stars and their velocities (U, V, W) and galactic orbits havebeen computed. Ages of 322 stars have been estimated with a Bayesianmethod of isochrone fitting. Two samples kinematically representative ofthe thin and thick disks have been selected, taking into account theHercules stream which is intermediate in kinematics, but with a probabledynamical origin. Our results show that the two disks are chemicallywell separated, they overlap greatly in metallicity and both showparallel decreasing alpha elements with increasing metallicity, in theinterval -0.80 < [Fe/H] < -0.30. The Mg enhancement with respectto Fe of the thick disk is measured to be 0.14 dex. An even largerenhancement is observed for Al. The thick disk is clearly older than thethin disk with tentative evidence of an AMR over 2-3 Gyr and a hiatus instar formation before the formation of the thin disk. We do not observea vertical gradient in the metallicity of the thick disk. The Herculesstream has properties similar to that of the thin disk, with a widerrange of metallicity. Metal-rich stars assigned to the thick disk andsuper-metal-rich stars assigned to the thin disk appear as outliers inall their properties.

Stability of planetary orbits in binary systems
Stability of S-type and P-type planetary orbits in binary systems ofdifferent mass and separation ratios is investigated. Criteria forstable, marginally stable and unstable planetary orbits are specified.These criteria are used to determine regions of stability of planetaryorbits in different binary systems with Jupiter-type planets. Theobtained results show that the regions of stability for S-type orbitsdepend on the distance ratio between the star and planet, and thestellar companions, in the range of 0.22 and 0.46, depending on the massratio. For P-type orbits, the regions of stability also depend on thatdistance ratio, in the range of 1.75 and 2.45, again depending on thethe mass ratio. Applications of these results to three observed binarysystems with giant planets, namely, τ Boo, HD 195019 and GJ 86, showthat the orbits of the giant planets in those systems can be classifiedas stable, as expected.

Identification of a complete sample of northern ROSAT All-Sky Survey X-ray sources. VIII. The late-type stellar component
We present results of an investigation of the X-ray properties, agedistribution, and kinematical characteristics of a high-galacticlatitude sample of late-type field stars selected from the ROSAT All-SkySurvey (RASS). The sample comprises 254 RASS sources with opticalcounterparts of spectral types F to M distributed over six study areaslocated at |b|  20 °, and Dec ≥ -9 °. A detailed studywas carried out for the subsample of ~200 G, K, and M stars. Lithiumabundances were determined for 179 G-M stars. Radial velocities weremeasured for most of the 141 G and K type stars of the sample. Combinedwith proper motions these data were used to study the age distributionand the kinematical properties of the sample. Based on the lithiumabundances half of the G-K stars were found to be younger than theHyades (660 Myr). About 25% are comparable in age to the Pleiades (100Myr). A small subsample of 10 stars is younger than the Pleiades. Theyare therefore most likely pre-main sequence stars. Kinematically the PMSand Pleiades-type stars appear to form a group with space velocitiesclose to the Castor moving group but clearly distinct from the LocalAssociation.Based on observations collected at the German-Spanish AstronomicalCentre, Calar Alto, operated by the Max-Planck-Institut fürAstronomie, Heidelberg, jointly with the Spanish National Commission forAstronomy, and at the European Southern Observatory, La Silla, Chile.Tables A2-A4 are only available in electronic form athttp://www.edpsciences.org

CHARM2: An updated Catalog of High Angular Resolution Measurements
We present an update of the Catalog of High Angular ResolutionMeasurements (CHARM, Richichi & Percheron \cite{CHARM}, A&A,386, 492), which includes results available until July 2004. CHARM2 is acompilation of direct measurements by high angular resolution methods,as well as indirect estimates of stellar diameters. Its main goal is toprovide a reference list of sources which can be used for calibrationand verification observations with long-baseline optical and near-IRinterferometers. Single and binary stars are included, as are complexobjects from circumstellar shells to extragalactic sources. The presentupdate provides an increase of almost a factor of two over the previousedition. Additionally, it includes several corrections and improvements,as well as a cross-check with the valuable public release observationsof the ESO Very Large Telescope Interferometer (VLTI). A total of 8231entries for 3238 unique sources are now present in CHARM2. Thisrepresents an increase of a factor of 3.4 and 2.0, respectively, overthe contents of the previous version of CHARM.The catalog is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/431/773

The Ca II Infrared Triplet as a stellar activity diagnostic . I. Non-LTE photospheric profiles and definition of the RIRT indicator
This work is part of a larger project on the study of activity in starsof spectral type similar to, or later than the Sun, from PMS to ZAMS,based on the analysis of the high resolution Ca II InfraRed Triplet (CaII IRT: λ= 8498, 8542, 8662 Å) observed profiles. Here, apreliminary study on the diagnostic power of these calcium lines hasbeen performed by means of NLTE calculations of the line profiles withan approximate treatment of UV line-blanketing, for a grid ofphotospheric models with Teff = 4200, 5200, 6200 K, log g =4.0, 4.5, 5.0 and [A/H] = 0.0, -1.0, -2.0. We used these calculations toestimate the sensitivity of the profiles to changes in stellarparameters and the effect of departures from LTE. As found by otherauthors, the Ca II triplet NLTE EQW s (equivalent widths) are quitesensitive to photospheric parameters, in particular to Teffand [A/H]. On the other hand, we find that the dependence of the Ca IItriplet lines central depression (CD = 1-central relative flux) on log gand Teff, and to a lesser extent to [A/H], is very weak. Thedeparture from LTE is negligible when we consider EQW s, unless verymetal-poor atmospheres are considered, while CD s can be affected byNLTE by more than 20%. This analysis indicates that in the use of theselines as activity indicators (where the details of the line profile inthe core are important), a NLTE treatment is required. Furthermore, weshow that a new chromospheric indicator, which we denoteRIRT, can be derived from measurements of Ca II IRT linecentral depressions, provided that rotational broadening is taken intoproper account. In order to facilitate the use of the Ca II IRT lines asactivity diagnostics, we give interpolation formulae for estimating lineCD s within the range of stellar parameters of our NLTE calculations.

Stars of Extragalactic Origin in the Solar Neighborhood
For 77 main-sequence F-G stars in the solar neighborhood with publishediron, magnesium, and europium abundances determined from high-dispersionspectra and with the ages estimated from theoretical isochrones, wecalculated the spatial velocities using Hipparcos data and the Galacticorbital elements. A comparison with the orbital elements of the globularclusters that are known to have been accreted by our Galaxy in the pastreveals stars of extragalactic origin. We show that the abundance ratiosof r- and alpha-elements in all the accreted stars differ sharply fromthose in the stars that are genetically associated with the Galaxy.According to current theoretical models, europium is produced mainly inlow-mass type-II supernovae (SNe II), while magnesium is synthesized inlarge quantities in high-mass SN II progenitors. Since all the oldaccreted stars of our sample exhibit a significant Eu overabundancerelative to Mg, we conclude that the maximum masses of the SN IIprogenitors outside the Galaxy were much lower than those inside it. Onthe other hand, only a small number of young accreted stars exhibit lownegative ratios [Eu/Mg] < 0. This can be explained by the delay ofprimordial star formation and the explosions of high-mass SNe II in arelatively small part of extragalactic space. We provide evidence thatthe interstellar medium was weakly mixed at the early evolutionarystages of the Galaxy formed from a single protogalactic cloud, and thatthe maximum mass of the SN II progenitors increased in it with timesimultaneously with the increase in mean metallicity.

The Atmospheric Lithium Abundances of Solar Analogues
We have analyzed the lithium abundance in the atmospheres of 20 starsthat are solar analogues based on high-resolution echelle spectra usingmodel atmospheres in a non-LTE approach. In terms of their lithiumabundances, the stars (which are located in a narrow range oftemperatures of 5650 5900 K) can be divided into two groups: one withlow lithium abundances, as in the solar atmosphere, and one with lithiumabundances that are higher than the solar value by about 1 dex (with theaccuracy of the lithium abundances being 0.15 dex).

Chemical Composition of 15 Photometric Analogues of the Sun
The results of a spectroscopic analysis of 15 stars that are photometricanalogues of the Sun are reported. The effective temperatures andsurface gravities in the stellar atmospheres are derived from publishedphotometric indices and the HIPPARCOS parallaxes. The abundances of 33elements ranging from lithium to europium are analyzed based onhigh-dispersion spectra taken with the new Coudé echellespectrometer of the Terskol Observatory in the northern Caucasus. Themain parameters of most of the stars agree with the data of an [Fe/H]catalog published in 2001. Our study of the chemical compositions of thesample stars indicates that photometric analogues of the Sun can bedivided into three groups according to their elemental abundances: sixstars have solar chemical composition, four have abundance excesses, andfive have some abundance deficiencies. The sample contains twometal-deficient subgiants (HD 133002 and HD 225239). Our resultsdemonstrate that photometric similarity is not a sufficient criterion toconsider a star as solar analogue. When several criteria, includingchemical composition, are simultaneously taken into account, only fourstars from the sample can be considered true solar analogues: HD 10307,HD 34411, HD 146233 (18 Sco), and HD 186427 (16 Cyg B). These resultsconfirm the previously published suggestion that 18 Sco is the mostprobable twin of the Sun: essentially all the parameters of the twostars coincide within the errors.

Neutron-Capture Elements in Halo, Thick-Disk, and Thin-Disk Stars: Neodymium
We have derived the LTE neodymium abundances in 60 cool stars withmetallicities [Fe/H] from 0.25 to -1.71 by applying a synthetic-spectrumanalysis to spectroscopic observations of NdII lines with a resolutionof λ/Δλ⋍60 000 and signal-to-noise ratios of100 200. We have improved the atomic parameters of NdII and blendinglines by analyzing the corresponding line pro files in the solarspectrum. Neodymium is overabundant with respect to iron in halo stars,[Nd/Fe]=0.33±0.09, with the [Nd/Fe] ratio decreasingsystematically with metallicity when [Fe/H]>-1. This reflects anonset of efficient iron production in type I supernovae during theformation of the thick disk. The [Nd/Ba] and [Nd/Eu] abundance ratiosbehave differently in halo, thick-disk, and thin-disk stars. Theobserved abundance ratios in halo stars, [Nd/Ba]=0.34±0.08 and[Nd/Eu]=-0.27±0.05, agree within the errors with the ratios ofthe elemental yields for the r-process. These results support theconclusion of other authors based on analyses of other elements that ther-process played the dominant role in the synthesis of heavy elementsduring the formation of the halo. The [Nd/Ba] and [Nd/Eu] ratios forthick-disk stars are almost independent of metallicity([Nd/Ba]=0.28(±0.03)-0.01(±0.04) [Fe/H] and[Nd/Eu]=-0.13(±0.03)+0.05(±0.04) [Fe/H]) but are smallerin absolute value than the corresponding ratios for halo stars,suggesting that the synthesis of s-process nuclei started during theformation of the thick disk. The s-process is estimated to havecontributed ⋍30% of the neodymium produced during this stage ofthe evolution of the Galaxy. The [Nd/Ba] ratio decreases abruptly by0.17 dex in the transition from the thick to the thin disk. Thesystematic decrease of [Nd/Ba] and increase of [Nd/Eu] with increasingmetallicity of thin-disk stars point toward a dominant role of thes-process in the synthesis of heavy elements during this epoch.

Chromospheric Ca II Emission in Nearby F, G, K, and M Stars
We present chromospheric Ca II H and K activity measurements, rotationperiods, and ages for ~1200 F, G, K, and M type main-sequence stars from~18,000 archival spectra taken at Keck and Lick Observatories as a partof the California and Carnegie Planet Search Project. We have calibratedour chromospheric S-values against the Mount Wilson chromosphericactivity data. From these measurements we have calculated medianactivity levels and derived R'HK, stellar ages,and rotation periods from general parameterizations for 1228 stars,~1000 of which have no previously published S-values. We also presentprecise time series of activity measurements for these stars.Based on observations obtained at Lick Observatory, which is operated bythe University of California, and on observations obtained at the W. M.Keck Observatory, which is operated jointly by the University ofCalifornia and the California Institute of Technology. The KeckObservatory was made possible by the generous financial support of theW. M. Keck Foundation.

The Indo-US Library of Coudé Feed Stellar Spectra
We have obtained spectra for 1273 stars using the 0.9 m coudéfeed telescope at Kitt Peak National Observatory. This telescope feedsthe coudé spectrograph of the 2.1 m telescope. The spectra havebeen obtained with the no. 5 camera of the coudé spectrograph anda Loral 3K×1K CCD. Two gratings have been used to provide spectralcoverage from 3460 to 9464 Å, at a resolution of ~1 Å FWHMand at an original dispersion of 0.44 Å pixel-1. For885 stars we have complete spectra over the entire 3460 to 9464 Åwavelength region (neglecting small gaps of less than 50 Å), andpartial spectral coverage for the remaining stars. The 1273 stars havebeen selected to provide broad coverage of the atmospheric parametersTeff, logg, and [Fe/H], as well as spectral type. The goal ofthe project is to provide a comprehensive library of stellar spectra foruse in the automated classification of stellar and galaxy spectra and ingalaxy population synthesis. In this paper we discuss thecharacteristics of the spectral library, viz., details of theobservations, data reduction procedures, and selection of stars. We alsopresent a few illustrations of the quality and information available inthe spectra. The first version of the complete spectral library is nowpublicly available from the National Optical Astronomy Observatory(NOAO) via ftp and http.

Classification of Spectra from the Infrared Space Observatory PHT-S Database
We have classified over 1500 infrared spectra obtained with the PHT-Sspectrometer aboard the Infrared Space Observatory according to thesystem developed for the Short Wavelength Spectrometer (SWS) spectra byKraemer et al. The majority of these spectra contribute to subclassesthat are either underrepresented in the SWS spectral database or containsources that are too faint, such as M dwarfs, to have been observed byeither the SWS or the Infrared Astronomical Satellite Low ResolutionSpectrometer. There is strong overall agreement about the chemistry ofobjects observed with both instruments. Discrepancies can usually betraced to the different wavelength ranges and sensitivities of theinstruments. Finally, a large subset of the observations (~=250 spectra)exhibit a featureless, red continuum that is consistent with emissionfrom zodiacal dust and suggest directions for further analysis of thisserendipitous measurement of the zodiacal background.Based on observations with the Infrared Space Observatory (ISO), aEuropean Space Agency (ESA) project with instruments funded by ESAMember States (especially the Principle Investigator countries: France,Germany, Netherlands, and United Kingdom) and with the participation ofthe Institute of Space and Astronautical Science (ISAS) and the NationalAeronautics and Space Administration (NASA).

New Hipparcos-based Parallaxes for 424 Faint Stars
We present a catalog of 424 common proper-motion companions to Hipparcosstars with good (>3 σ) parallaxes, thereby effectively providingnew parallaxes for these companions. Compared with typical stars in theHipparcos catalog, these stars are substantially dimmer. The catalogincludes 20 white dwarfs and an additional 29 stars withMV>14, the great majority of the latter being M dwarfs.

Synthetic Lick Indices and Detection of α-enhanced Stars. II. F, G, and K Stars in the -1.0 < [Fe/H] < +0.50 Range
We present an analysis of 402 F, G, and K solar neighborhood stars, withaccurate estimates of [Fe/H] in the range -1.0 to +0.5 dex, aimed at thedetection of α-enhanced stars and at the investigation of theirkinematical properties. The analysis is based on the comparison of 571sets of spectral indices in the Lick/IDS system, coming from fourdifferent observational data sets, with synthetic indices computed withsolar-scaled abundances and with α-element enhancement. We useselected combinations of indices to single out α-enhanced starswithout requiring previous knowledge of their main atmosphericparameters. By applying this approach to the total data set, we obtain alist of 60 bona fide α-enhanced stars and of 146 stars withsolar-scaled abundances. The properties of the detected α-enhancedand solar-scaled abundance stars with respect to their [Fe/H] values andkinematics are presented. A clear kinematic distinction betweensolar-scaled and α-enhanced stars was found, although a one-to-onecorrespondence to ``thin disk'' and ``thick disk'' components cannot besupported with the present data.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Cygnus
Right ascension:19h41m48.90s
Declination:+50°31'31.0"
Apparent magnitude:5.96
Distance:21.622 parsecs
Proper motion RA:-147.8
Proper motion Dec:-158.7
B-T magnitude:6.719
V-T magnitude:5.997

Catalogs and designations:
Proper Names
Flamsteed16 Cyg
HD 1989HD 186408
TYCHO-2 2000TYC 3565-1524-1
USNO-A2.0USNO-A2 1350-10922511
BSC 1991HR 7503
HIPHIP 96895

→ Request more catalogs and designations from VizieR