Home     To Survive in the Universe    
    Why to Inhabit     Top Contributors     Astro Photo     The Collection     Forum     Blog New!     FAQ     Login  

ξ Per (Menkib)



Upload your image

DSS Images   Other Images

Related articles

The Puzzle of the Metallic Line Stars
In the puzzle of the metallic line (Am) stars, there still seem to bemissing pieces. While the ``normal'' A stars have elemental abundancesclose to solar, the classical Am stars show stronger absorption linesfor most heavy elements in their spectra. Elements with ionizationpotentials that nearly agree with those of hydrogen or helium havereduced abundances. The Ca II and Sc II lines are especially weak. TheAm stars have no ultraviolet emission lines. They are binaries that,with very few exceptions, have rotational velocities vsini lower than100 km s-1. Of the main-sequence A stars, 20% to 30% are Amstars. Here we rediscuss previous suggestions that tried to explain thepeculiar line strengths in the Am star spectra. In particular, wecompare the well-studied properties of Hyades A and Am stars in order toidentify reasons that can or cannot explain the differences. We findthat accretion of interstellar material by A stars with distortedmagnetic fields, which are weaker than those in peculiar A (Ap) stars,has the best chance of explaining the main characteristics of thepeculiar heavy-element abundances in Am star photospheres.Charge-exchange reactions also seem to be important.

The Homogeneity of Interstellar Elemental Abundances in the Galactic Disk
We present interstellar elemental abundance measurements derived fromSpace Telescope Imaging Spectrograph echelle observations of 47 sightlines extending up to 6.5 kpc through the Galactic disk. These pathsprobe a variety of interstellar environments, covering ranges of nearly4 orders of magnitude in molecular hydrogen fraction f(H2)and more than 2 in mean hydrogen sight-line density. Coupling the current data with Goddard HighResolution Spectrograph data from 17 additional sight lines and thecorresponding Far Ultraviolet Spectroscopic Explorer and Copernicusobservations of H2 absorption features, we explore magnesium,phosphorus, manganese, nickel, copper, and germanium gas-phase abundancevariations as a function of : density-dependentdepletion is noted for each element, consistent with a smooth transitionbetween two abundance plateaus identified with warm and cold neutralinterstellar medium depletion levels. The observed scatter with respectto an analytic description of these transitions implies that totalelemental abundances are homogeneous on length scales of hundreds ofparsecs, to the limits of abundance measurement uncertainty. Theprobable upper limit we determine for intrinsic variability at any is 0.04 dex, aside from an apparent 0.10 dexdeficit in copper (and oxygen) abundances within 800 pc of the Sun.Magnesium dust abundances are shown to scale with the amount of siliconin dust, and in combination with a similar relationship between iron andsilicon, these data appear to favor the young F and G star values ofSofia & Meyer as an elemental abundance standard for the Galaxy.Based on observations with the NASA/ESA.

The Discordance of Mass-Loss Estimates for Galactic O-Type Stars
We have determined accurate values of the product of the mass-loss rateand the ion fraction of P+4, M˙q(P+4), for asample of 40 Galactic O-type stars by fitting stellar wind profiles toobservations of the P V resonance doublet obtained with FUSE, ORFEUSBEFS, and Copernicus. When P+4 is the dominant ion in thewind [i.e., 0.5<~q(P+4)<=1], M˙q(P+4)approximates the mass-loss rate to within a factor of <~2. Theorypredicts that P+4 is the dominant ion in the winds of O7-O9.7stars, although an empirical estimator suggests that the range O4-O7 maybe more appropriate. However, we find that the mass-loss rates obtainedfrom P V wind profiles are systematically smaller than those obtainedfrom fits to Hα emission profiles or radio free-free emission bymedian factors of ~130 (if P+4 is dominant between O7 andO9.7) or ~20 (if P+4 is dominant between O4 and O7). Thesediscordant measurements can be reconciled if the winds of O stars in therelevant temperature range are strongly clumped on small spatial scales.We use a simplified two-component model to investigate the volumefilling factors of the denser regions. This clumping implies thatmass-loss rates determined from ``ρ2'' diagnostics havebeen systematically overestimated by factors of 10 or more, at least fora subset of O stars. Reductions in the mass-loss rates of this size haveimportant implications for the evolution of massive stars andquantitative estimates of the feedback that hot-star winds provide totheir interstellar environments.

Bright OB stars in the Galaxy. III. Constraints on the radial stratification of the clumping factor in hot star winds from a combined Hα, IR and radio analysis
Context: .Recent results strongly challenge the canonical picture ofmassive star winds: various evidence indicates that currently acceptedmass-loss rates, {dot M}, may need to be revised downwards, by factorsextending to one magnitude or even more. This is because the mostcommonly used mass-loss diagnostics are affected by "clumping"(small-scale density inhomogeneities), influencing our interpretation ofobserved spectra and fluxes. Aims: .Such downward revisions wouldhave dramatic consequences for the evolution of, and feedback from,massive stars, and thus robust determinations of the clumping propertiesand mass-loss rates are urgently needed. We present a first attemptconcerning this objective, by means of constraining the radialstratification of the so-called clumping factor. Methods: .To thisend, we have analyzed a sample of 19 Galactic O-type supergiants/giants,by combining our own and archival data for Hα, IR, mm and radiofluxes, and using approximate methods, calibrated to more sophisticatedmodels. Clumping has been included into our analysis in the"conventional" way, by assuming the inter-clump matter to be void.Because (almost) all our diagnostics depends on the square of density,we cannot derive absolute clumping factors, but only factors normalizedto a certain minimum. Results: .This minimum was usually found tobe located in the outermost, radio-emitting region, i.e., the radiomass-loss rates are the lowest ones, compared to {dot M} derived fromHα and the IR. The radio rates agree well with those predicted bytheory, but are only upper limits, due to unknown clumping in the outerwind. Hα turned out to be a useful tool to derive the clumpingproperties inside r < 3{ldots}5 Rstar. Our most importantresult concerns a (physical) difference between denser and thinnerwinds: for denser winds, the innermost region is more strongly clumpedthan the outermost one (with a normalized clumping factor of 4.1± 1.4), whereas thinner winds have similar clumping properties inthe inner and outer regions. Conclusions: .Our findings arecompared with theoretical predictions, and the implications arediscussed in detail, by assuming different scenarios regarding the stillunknown clumping properties of the outer wind.

Looking for Discrete UV Absorption Features in the Early-Type Eclipsing Binaries μ1 Scorpii and AO Cassiopeiae
A search for discrete absorption components in the ultraviolet spectraof the early-type binaries μ1 Scorpii and AO Cassiopeiaehas been undertaken by analyzing material secured with the InternationalUltraviolet Explorer satellite during an exclusively assigned intervalof nearly 50 hr. While the spectra of μ1 Sco definitely donot show the presence of such lines, the spectra of AO Cas do confirmthem and permit us to draw some conclusions about where they may beformed.

Search for C2- in Diffuse Clouds
A search has been carried out for the C2- ion indiffuse clouds toward HD 23180, HD 24912, HD 24398, HD 46711, and HD50064 using the HIDES spectrometer on the Okayama 188-cm telescope. Anupper limit of 8.3 × 1010, 1.8 × 1012cm-2 was obtained for the C2- columndensity. The upper limit value (3.8 × 1011cm-2) toward HD 23180 is two orders of magnitude smaller thanthat of the C2 radical. Possible production mechanisms forC2- are discussed.

On the feasibility of detection of neutron star companions to OB runaways using Gaia astrometry
For an illustrative sample of classical OB runaway stars, we examine thecapability of the upcoming Gaia satellite to detect compact companionsby the use of astrometric techniques. For the OB runaway stars in oursample, we estimate initial system parameters and consider the modifyingevolutionary effects of mass transfer and supernova explosion of theprimary. The possible system configurations that follow from this, andthe expected Gaia accuracy, determine the likelihood of detecting amovement of the photocentre due to an unseen companion. As the size ofthe natal kick imparted to the core of the exploding star is increasedthe overall probability of detecting a neutron star companion decreasesas more systems become disrupted. The overall detection probabilitiesfor our illustrative sample range from 2% to 27%, which imply thatwithin a distance of approximately 5 kpc from the Sun around 48detections of compact companions to runaway stars can be expected. Forcomparison, around 15% of High Mass X-ray Binaries would exhibit wobblesdetectable with Gaia.

Evolution of X-ray emission from young massive star clusters
The evolution of X-ray emission from young massive star clusters ismodelled, taking into account the emission from the stars as well asfrom the cluster wind. It is shown that the level and character of thesoft (0.2-10 keV) X-ray emission change drastically with cluster age andare tightly linked with stellar evolution. Using the modern X-rayobservations of massive stars, we show that the correlation betweenbolometric and X-ray luminosity known for single O stars also holds forO+O and (Wolf-Rayet) WR+O binaries. The diffuse emission originates fromthe cluster wind heated by the kinetic energy of stellar winds andsupernova explosions. To model the evolution of the cluster wind, themass and energy yields from a population synthesis are used as input toa hydrodynamic model. It is shown that in a very young cluster theemission from the cluster wind is low. When the cluster evolves, WRstars are formed. Their strong stellar winds power an increasing X-rayemission of the cluster wind. Subsequent supernova explosions pump thelevel of diffuse emission even higher. Clusters at this evolutionarystage may have no X-ray-bright stellar point sources, but a relativelyhigh level of diffuse emission. A supernova remnant may become adominant X-ray source, but only for a short time interval of a fewthousand years. We retrieve and analyse Chandra and XMM-Newtonobservations of six massive star clusters located in the LargeMagellanic Cloud (LMC). Our model reproduces the observed diffuse andpoint-source emission from these LMC clusters, as well as from theGalactic clusters Arches, Quintuplet and NGC 3603.

Correlation patterns between 11 diffuse interstellar bands and ultraviolet extinction
We relate the equivalent widths of 11 diffuse interstellar bands,measured in the spectra of 49 stars, to different colour excesses in theultraviolet. We find that most of the observed bands correlatepositively with the extinction in the neighbourhood of the2175-Åbump. Correlation with colour excesses in other parts of theextinction curve is more variable from one diffuse interstellar band toanother; we find that some diffuse bands (5797, 5850 and 6376 Å)correlate positively with the overall slope of the extinction curve,while others (5780 and 6284 Å) exhibit negative correlation. Wediscuss the implications of these results on the links between thediffuse interstellar band carriers and the properties of theinterstellar grains.

FUSE Measurements of Far-Ultraviolet Extinction. I. Galactic Sight Lines
We present extinction curves that include data down to far-ultravioletwavelengths (FUV; 1050-1200 Å) for nine Galactic sight lines. TheFUV extinction was measured using data from the Far UltravioletSpectroscopic Explorer. The sight lines were chosen for their unusualextinction properties in the infrared through the ultraviolet; that theyprobe a wide range of dust environments is evidenced by the large spreadin their measured ratios of total to selective extinction,RV=2.43-3.81. We find that extrapolation of the Fitzpatrick& Massa relationship from the ultraviolet appears to be a goodpredictor of the FUV extinction behavior. We find that predictions ofthe FUV extinction based on the Cardelli, Clayton, & Mathis (CCM)dependence on RV give mixed results. For the seven extinctioncurves well represented by CCM in the infrared through ultraviolet(x<8 μm-1), the FUV extinction is well predicted inthree sight lines, overpredicted in two sight lines, and underpredictedin two sight lines. A maximum entropy method analysis using a simplethree-component grain model shows that seven of the nine sight lines inthe study require a larger fraction of grain materials to be in dustwhen FUV extinction is included in the models. Most of the added grainmaterial is in the form of small (radii <~ 200 Å) grains.Based on observations with the NASA-CNES-CSA Far UltravioletSpectroscopic Explorer, which is operated by the Johns HopkinsUniversity under NASA contract NAS5-32985.

X-Ray Counterparts of Runaway Stars
An X-ray search for possible compact companions of runaway OB stars hasbeen conducted using pointed ROSAT observations. Of a list of 71 runawaystars, ROSAT exposures were available for 24, of which 13 are detected.These numbers are nearly 3 times larger than for a previously studiedEinstein sample, and spectral information is exploited as well.Luminosities, hardness ratios, and long-term variability are as fornormal OB stars and do not suggest the presence of collapsed companions.A result like this is often interpreted as support for dynamicalejection from a dense group rather than a supernova event in a binary asa production process for runaway stars. There are, however, severalcircumstances that may adversely affect the observability of a compactcompanion, or after a supernova explosion systems may be disruptedbecause of the large natal kick velocity imparted to the neutron star asa result of asymmetries in the explosions. It is noted that there isactually evidence for both of these production routes and that they maybe expected to occur sequentially in the evolution of OB associations.

Interstellar 12C/13C ratios through CH^+λλ 3957,4232 absorption in local clouds: incomplete mixing in the ISM
The 12C/13C isotope ratio is a tracer of stellaryields and the efficiency of mixing in the ISM.12CH+/13CH+ is not affectedby interstellar chemistry, and is the most secure way of measuring12C/13C in the diffuse ISM.R=12C/13C is 90 in the solar system. Previousmeasurements of 12CH+λλ3957.7,4232.3and 13CH+λλ3958.2,4232.0 absorptiontoward nearby stars indicate some variations in12C/13C, with values ranging from 40 to 90suggesting inefficient mixing. Except for the cloud toward ζOph,these R values are strongly affected by noise. With UVES on the VLT wehave improved on the previous interstellar 12C/13Cmeasurements. The weighted 12C/13C ratio in thelocal ISM is 78.27 ± 1.83, while the weighted dispersion of ourmeasurements is 12.7, giving a 6.9σ scatter. Thus we report on a6.9σ detection of 16.2% root-mean-square variations in the carbonisotopic ratio on scales of ~100 pc: R= 74.7 ± 2.3 in theζOph cloud, while R = 88.6 ± 3.0 toward HD 152235 in theLupus clouds, R = 62.2 ± 5.3 towards HD 110432 in the Coalsack,and R = 98.9 ± 10.1 toward HD 170740. The observed variations in13C/12C are the first significant detection ofchemical heterogeneity in the local ISM.

Bright OB stars in the Galaxy. II. Wind variability in O supergiants as traced by Hα
We investigate the line-profile variability (lpv) of Hα for alarge sample of O-type supergiants (15 objects between O4 and O9.7), inan objective, statistically rigorous manner. We employed the TemporalVariance Spectrum (TVS) analysis, developed for the case of photosphericabsorption lines and modified by us to take into account the effects ofwind emission. By means of a comparative analysis we place constraintson the properties of this variability - quantified in terms of a meanand a newly defined fractional amplitude of deviations - as a functionof stellar and wind parameters. The results of our analysis show thatall the stars in the sample show evidence of significant lpv inHα, mostly dominated by processes in the wind. The variationsoccur between zero and 0.3 v_&infy; (i.e., below 1.5 R_star ), in goodagreement with results from similar studies. A comparison between theobservations and corresponding line-profile simulations indicates thatfor stars with intermediate wind densities the properties of theHα variability can be explained by simple models consisting ofcoherent or broken shells (blobs) uniformly distributed over the windvolume, with an intrinsic scatter in the maximum density contrast ofabout a factor of two. For stars at lower and higher wind densities, onthe other hand, we found certain inconsistencies between theobservations and our predictions, most importantly concerning the meanamplitude and the symmetry properties of the TVS. This disagreementmight be explained by the presence of coherent large-scale structures,partly confined in a volume close to the star. Interpreted in terms of avariable mass-loss rate, the observed variations of Hα indicatechanges of ±4% with respect to the mean value of dot M for starswith stronger winds and of ± 16% for stars with weaker winds. Theeffect of these variations on the corresponding wind momenta is ratherinsignificant (less than 0.16 dex), increasing only the local scatterwithout affecting the Wind Momentum Luminosity Relationship.

Deuterated molecular hydrogen in the Galactic ISM. New observations along seven translucent sightlines
We present column density measurements of the HD molecule in theinterstellar gas toward 17 Galactic stars. The values for the seven mostheavily reddened sightlines, with E(B-V) = 0.38-0.72, are derived fromobservations with the Far Ultraviolet Spectroscopic Explorer (FUSE). Theother ten values are from a reanalysis of spectra obtained withCopernicus. In all cases, high-resolution ground-based observations of KI and/or the CH molecule were used to constrain the gas velocitystructure and to correct for saturation effects. Comparisons of thecolumn densities HD, CH, CN, and K I in these 17 sightlines indicatethat HD is most tightly correlated with CH. Stringent lower limits tothe interstellar D/H ratio, derived from the HD/2H2 ratio,range from 3.7 × 10-7 to 4.3 × 10-6.Our results also suggest that the HD/H2 ratio increases withthe molecular fraction f(H2) and that the interstellar D/Hratio might be obtained from HD by probing clouds with f(H2)˜ 1. Finally, we note an apparent relationship between the molecularfractions of hydrogen and deuterium.

Correlations between diffuse interstellar bands and atomic lines
We present and discuss correlations between strengths of the well-known,strong interstellar atomic lines of KI and CaII, and four selected,strong unidentified diffuse interstellar bands (DIBs): 5780, 5797, 5850and 6614. In order to analyse a homogeneous sample of echellehigh-resolution spectra it has been chosen to use measurements fromTerskol Observatory in Northern Caucasus plus a selected number ofhigher resolution observations performed using other instruments. Wedemonstrate that the strength of certain DIBs correlate well withneutral potassium lines and to a much lower degree with ionized calciumlines. This fact suggests that the degree of irradiation of a cloud withUV photons, capable to ionize interstellar atoms, plays a crucial rolein the formation/maintenance of certain molecular species: possiblecarriers of DIBs.

Large-scale wind structures in OB supergiants: a search for rotationally modulated Hα variability
We present the results of a long-term monitoring campaign of theHα line in a sample of bright OB supergiants (O7.5-B9) which aimsat detecting rotationally modulated changes potentially related to theexistence of large-scale wind structures. A total of 22 objects weremonitored during 36 nights spread over six months in 2001-2002.Coordinated broad-band photometric observations were also obtained forsome targets. Conspicuous evidence for variability in Hα is foundfor the stars displaying a feature contaminated by wind emission. Mostchanges take place on a daily time-scale, although hourly variations arealso occasionally detected. Convincing evidence for a cyclical patternof variability in Hα has been found in two stars: HD 14134 and HD42087. Periodic signals are also detected in other stars, butindependent confirmation is required. Rotational modulation is suggestedfrom the similarity between the observed recurrence time-scales (in therange 13-25 d) and estimated periods of stellar rotation. We callattention to the atypical case of HD 14134, which exhibits a clear12.8-d periodicity, both in the photometric and in the spectroscopicdata sets. This places this object among a handful of early-type starswhere one may observe a clear link between extended wind structures andphotospheric disturbances. Further modelling may test the hypothesisthat azimuthally-extended wind streams are responsible for the patternsof spectral variability in our target stars.

A Galactic O Star Catalog
We have produced a catalog of 378 Galactic O stars with accuratespectral classifications that is complete for V<8 but includes manyfainter stars. The catalog provides cross-identifications with othersources; coordinates (obtained in most cases from Tycho-2 data);astrometric distances for 24 of the nearest stars; optical (Tycho-2,Johnson, and Strömgren) and NIR photometry; group membership,runaway character, and multiplicity information; and a Web-based versionwith links to on-line services.

The Homogeneity of Interstellar Oxygen in the Galactic Disk
We present an analysis of high-resolution Hubble Space Telescope (HST)Space Telescope Imaging Spectrograph (STIS) observations of O Iλ1356 and H I Lyα absorption in 36 sight lines that probe avariety of Galactic disk environments and include paths that range overnearly 4 orders of magnitude in f(H2), over 2 orders ofmagnitude in , and that extend up to 6.5 kpc inlength. Since the majority of these sight lines have also been observedby the Far Ultraviolet Spectroscopic Explorer (FUSE), we have undertakenthe study of gas-phase O/H abundance ratio homogeneity using the currentsample and previously published Goddard High Resolution Spectrograph(GHRS) results. Two distinct trends are identified in the 56 sight linesample: an apparent decrease in gas-phase oxygen abundance withincreasing mean sight-line density () and a gapbetween the mean O/H ratio for sight lines shorter and longer than about800 pc. The first effect is a smooth transition between two depletionlevels associated with large mean density intervals; it is centered near=1.5cm-3 and is similar to trendsevident in gas-phase abundances of other elements. Paths less dense thanthe central value exhibit a mean O/H ratio of log10(O/H)=-3.41+/-0.01 (or 390+/-10ppm), which is consistent with averages determined for several longlow-density paths observed by STIS (André et al. 2003) and shortlow-density paths observed by FUSE (Moos et al. 2002). Sight lines ofhigher mean density exhibit an average O/H value of log10(O/H)=-3.55+/-0.02 (284+/-12ppm). The data points for low- paths are scatteredmore widely than those for denser sight lines, because O/H ratios forsuch paths shorter than 800 pc are generally about 0.10 dex lower thanthe values for longer ones. Scenarios that would be consistent withthese results include a recent infall of metal-poor gas onto the localGalactic disk and an interstellar environment toward Orion that isconducive to reducing the apparent gas-phase oxygen abundance.Based on observations with the NASA/ESA Hubble Space Telescope (HST) andthe NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer (FUSE). HSTspectra were obtained at the Space Telescope Science Institute, which isoperated by the Association of Universities for Research in Astronomy,Inc., under NASA contract NAS5-26555 FUSE is operated for NASA by theJohns Hopkins University under NASA contract NAS5-32985.

Interstellar Carbon in Translucent Sight Lines
We report interstellar C II column densities or upper limits determinedfrom weak absorption of the 2325.4029 Å intersystem transitionobserved in six translucent sight lines (AV>~1) with theSpace Telescope Imaging Spectrograph (STIS). The sight lines sample awide range of interstellar characteristics, including total to selectiveextinction, RV=2.6-5.1 average hydrogen density along thesight line, =3-14 cm-3 and fraction of H inmolecular form, 0-~40%. Four of the sight lines, those toward HD 37021,HD 37061, HD 147888, and HD 207198, have interstellar gas-phaseabundances that are consistent with the diffuse sight line ratio of161+/-17 carbon atoms in the gas per million hydrogen nuclei. We notethat while it has a gas-phase carbon abundance that is consistent withthe other sight lines, a large fraction of the C II toward HD 37061 isin an excited state. The sight line toward HD 152590 has a measuredinterstellar gas-phase carbon abundance that is well above the diffusesight line average; the column density of C in this sight line may beoverestimated because of noise structure in the data. Toward HD 27778 wefind a 3 σ abundance upper limit of <=108 C atoms in the gasper million H, a substantially enhanced depletion of C as compared tothe diffuse sight line value. The interstellar characteristics toward HD27778 are otherwise not extreme among the sample, except for anunusually large abundance of CO molecules in the gas.Based on observations with the NASA/ESA Hubble Space Telescope, obtainedat the Space Telescope Science Institute, which is operated by theAssociation of Universities for Research in Astronomy, Inc., under NASAcontract NAS 5-26555.

Total to Selective Extinction Ratios and Visual Extinctions from Ultraviolet Data
We present determinations of the total to selective extinction ratio R_Vand visual extinction A_V values for Milky Way stars using ultravioletcolor excesses. We extend the analysis of Gnacinski and Sikorski (1999)by using non-equal weights derived from observational errors. We presenta detailed discussion of various statistical errors. In addition, weestimate the level of systematic errors by considering differentnormalization of the extinction curve adopted by Wegner (2002). Ourcatalog of 782 R_V and A_V values and their errors is available in theelectronic form on the World Wide Web.

On the Hipparcos parallaxes of O stars
We compare the absolute visual magnitude of the majority of bright Ostars in the sky as predicted from their spectral type with the absolutemagnitude calculated from their apparent magnitude and the Hipparcosparallax. We find that many stars appear to be much fainter thanexpected, up to five magnitudes. We find no evidence for a correlationbetween magnitude differences and the stellar rotational velocity assuggested for OB stars by Lamers et al. (1997, A&A, 325, L25), whosesmall sample of stars is partly included in ours. Instead, by means of asimulation we show how these differences arise naturally from the largedistances at which O stars are located, and the level of precision ofthe parallax measurements achieved by Hipparcos. Straightforwardlyderiving a distance from the Hipparcos parallax yields reliable resultsfor one or two O stars only. We discuss several types of bias reportedin the literature in connection with parallax samples (Lutz-Kelker,Malmquist) and investigate how they affect the O star sample. Inaddition, we test three absolute magnitude calibrations from theliterature (Schmidt-Kaler et al. 1982, Landolt-Börnstein; Howarth& Prinja 1989, ApJS, 69, 527; Vacca et al. 1996, ApJ, 460, 914) andfind that they are consistent with the Hipparcos measurements. AlthoughO stars conform nicely to the simulation, we notice that some B stars inthe sample of \citeauthor{La97} have a magnitude difference larger thanexpected.

Stellar and wind parameters of Galactic O-stars. The influence of line-blocking/blanketing
We have re-analyzed the Galactic O-star sample from \citet{puls96} bymeans of line-blanketed NLTE model atmospheres in order to investigatethe influence of line-blocking/blanketing on the derived parameters. Theanalysis has been carried out by fitting the photospheric and wind linesfrom H and He. In most cases we obtained a good fit, but we have alsofound certain inconsistencies which are probably related to a stillinadequate treatment of the wind structure. These inconsistenciescomprise the line cores of Hγ and Hβ insupergiants (the synthetic profiles are too weak when the mass-loss rateis determined by matching Hα) and the ``generalizeddilution effect'' (cf. \citealt{vo89}) which is still present in He I4471 of cooler supergiants and giants.Compared to pure H/He plane-parallel models we found a decrease ineffective temperatures which is largest at earliest spectral types andfor supergiants (with a maximum shift of roughly 8000 K). This findingis explained by the fact that line-blanketed models of hot stars havephotospheric He ionization fractions similar to those from unblanketedmodels at higher Teff and higher log g. Consequently, anyline-blanketed analysis based on the He ionization equilibrium resultsin lower Teff-values along with a reduction of either log gor helium abundance (if the reduction of log g is prohibited by theBalmer line wings). Stellar radii and mass-loss rates, on the otherhand, remain more or less unaffected by line-blanketing.We have calculated ``new'' spectroscopic masses and compared them withprevious results. Although the former mass discrepancy \citep{h92}becomes significantly reduced, a systematic trend for masses below 50Msun seems to remain: The spectroscopically derived valuesare smaller than the ``evolutionary masses'' by roughly 10Msun. Additionally, a significant fraction of our samplestars stays over-abundant in He, although the actual values were foundto be lower than previously determined.Also the wind-momentum luminosity relation (WLR) changes because oflower luminosities and almost unmodified wind-momentum rates. Comparedto previous results, the separation of the WLR as a function ofluminosity class is still present but now the WLR for giants/dwarfs isconsistent with theoretical predictions.We argue that the derived mass-loss rates of stars withHα in emission are affected by clumping in the lowerwind region. If the predictions from different and independenttheoretical simulations (\citealt {Vink00, Paul03, puls03a}) that theWLR should be independent of luminosity class were correct, a typicalclumping factor <ρ2>/<ρ>2 ≈5 should be derived by ``unifying'' the different WLRs.Based upon observations obtained at the INT and the European SouthernObservatory, La Silla, Chile. The INT is operated on the island of LaPalma by the ING in the Spanish Observatorio de El Roque de losMuchachos of the Instituto de Astrofísica de Canarias.Appendix A in only available in electronic form athttp://www.edpsciences.org

On the relation between diffuse bands and column densities of H2, CH and CO molecules
Mutual relations between column densities of H2, CH and COmolecules as well as between the latter and strengths of the major 5780and 5797 diffuse bands are presented and discussed. The CH radical seemsto be a good H2 tracer, possibly better than CO. It is alsodemonstrated that the molecular fraction of the H2 moleculeis correlated with an intensity ratio of 5797 and 5780 DIBs, suggestingthe possible formation of narrow DIB carriers in denser clouds,dominated by molecular hydrogen and reasonably shielded from ionizing UVradiation by small dust grains.Tables 1 and 2 are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/414/949

Bright OB stars in the Galaxy. I. Mass-loss and wind-momentum rates of O-type stars: A pure H\alpha analysis accounting for line-blanketing
We study mass-loss and wind momentum rates of 29 Galactic O-type starswith luminosity classes I, III and V by means of a pure H\alpha profileanalysis and investigate to what extent the results compare to thoseoriginating from a state-of-the-art, complete spectral analysis. Ourinvestigation relies on the approximate method developed by\citet{Puls96} which we have modified to account for the effects ofline-blanketing. Effective temperatures and gravities needed to obtainquantitative results from such a simplified approach have been derivedby means of calibrations based on most recent spectroscopic NLTEanalyses and models of Galactic stars by \citet{Repo03} and\citet{Martins02}. Comparing (i) the derived wind-densities to thosedetermined by \citet{Repo03} for eleven stars in common and (ii) theWind-momentum Luminosity Relationship (WLR) for our sample stars tothose derived by other investigations, we conclude that our approximateapproach is actually able to provide consistent results. Additionally,we studied the consequences of ``fine tuning'' some of the direct andindirect parameters entering the WLR, especially by accounting fordifferent possible values of stellar reddening and distances. Combiningour data set with the corresponding data provided by \citet{Herrero02}and \citet{Repo03} we finally study the WLR for the largest sample ofGalactic O-type stars gathered so far, including an elaborate errortreatment. The established disagreement between the theoreticalpredictions and the ``observed'' WLRs being a function of luminosityclass is suggested to be a result of wind clumping. Different strategiesto check this hypothesis are discussed, particularly by comparing theH\alpha mass-loss rates with the ones derived from radio observations.

Oscillator strengths of the resonance 4s-4p lines in ZnII
We have undertaken extensive configuration interaction calculations ofthe 4s 2S1/2- 4p2Po1/2,3/2 lines of ZnII. Corepolarization, which is confirmed as a significant effect in thedetermination of the oscillator strengths, is introduced throughexplicit configuration interaction rather than by means of modelpotentials. It is shown that the ab initio calculation of this effectgives results that are close to those obtained with model potentialswhich incorporate the polarizability of the ZnIII core. The oscillatorstrengths are reduced to around 75 per cent of the single configurationvalue. We also find that the inclusion of electron correlation in thecore causes the oscillator strength to rise again, although onlymarginally. Our final oscillator strengths, which incorporate all theseeffects, are 0.268 and 0.547 for the 4s 2S1/2- 4p2Po1/2 and 4s2S1/2- 4p 2Po3/2lines, respectively. These values are in good agreement with recentmany-body perturbation theory calculations of Johnson and withunpublished multiconfigurational Hartree-Fock or MulticonfigurationalDirac-Hartree-Fock (MCDHF) calculations of Froese Fischer, but lie about5-10 per cent higher than the most recent experimental values obtainedby Bergeson and Lawler.

Toward an adequate method to isolate spectroscopic families of diffuse interstellar bands
We divide some of the observed diffuse interstellar bands (DIBs) intofamilies that appear to have the spectral structure of single species.Three different methods are applied to separate such families, exploringthe best approach for future investigations of this type. Starting witha statistical treatment of the data, we found that statistical methodsby themselves give insufficient results. Two other methods of dataanalysis (`averaging equivalent widths' and `investigating the figureswith arranged spectrograms') were found to be more useful as tools forfinding the spectroscopic families of DIBs. On the basis of thesemethods, we suggest some candidates as `relatives' of 5780- and5797-Å bands.

Large-scale Wind Structures in OB Supergiants: a Search for Rotationally Modulated H variability
We present preliminary results of a long-term spectroscopic monitoringof a sample of bright OB-supergiants aimed at establishing the incidenceof co-rotating, large-scale wind structures by detecting rotationallymodulated variability in H. Dramatic line-profile variations operatingon a daily (and in some cases on a hourly) timescale are observed. Adetailed period analysis has been so far carried out for 2 stars, andrevealed in both cases the existence of cyclical H variations consistentwith rotational modulation. In the case of HD 14134, the sameperiodicity is found in the contemporaneous light curve.

High-Resolution Observations of Interstellar Ca I Absorption-Implications for Depletions and Electron Densities in Diffuse Clouds
We present high-resolution (FWHM~0.3-1.5 km s-1) spectra,obtained with the AAT UHRF, the McDonald Observatory 2.7 m coudéspectrograph, and/or the KPNO coudé feed, of interstellar Ca Iabsorption toward 30 Galactic stars. Comparisons of the column densitiesof Ca I, Ca II, K I, and other species-for individual componentsidentified in the line profiles and also when integrated over entirelines of sight-yield information on relative electron densities anddepletions (dependent on assumptions regarding the ionizationequilibrium). There is no obvious relationship between the ratio N(CaI)/N(Ca II) [equal to ne/(Γ/αr) forphotoionization equilibrium] and the fraction of hydrogen in molecularform f(H2) (often taken to be indicative of the local densitynH). For a smaller sample of sight lines for which thethermal pressure (nHT) and local density can be estimated viaanalysis of the C I fine-structure excitation, the average electrondensity inferred from C, Na, and K (assuming photoionizationequilibrium) seems to be independent of nH andnHT. While the electron density (ne) obtained fromthe ratio N(Ca I)/N(Ca II) is often significantly higher than the valuesderived from other elements, the patterns of relative nederived from different elements show both similarities and differencesfor different lines of sight-suggesting that additional processesbesides photoionization and radiative recombination commonly andsignificantly affect the ionization balance of heavy elements in diffuseinterstellar clouds. Such additional processes may also contribute tothe (apparently) larger than expected fractional ionizations(ne/nH) found for some lines of sight withindependent determinations of nH. In general, inclusion of``grain-assisted'' recombination does reduce the inferred ne,but it does not reconcile the ne estimated from differentelements; it may, however, suggest some dependence of ne onnH. The depletion of calcium may have a much weakerdependence on density than was suggested by earlier comparisons with CHand CN. Two appendices present similar high-resolution spectra of Fe Ifor a few stars and give a compilation of column density data for Ca I,Ca II, Fe I, and S I.

High-Resolution Spectroscopy of FU Orionis Stars
High-resolution spectroscopy was obtained of the FU orionis stars FU Oriand V1057 Cyg between 1995 and 2002 with the SOFIN spectrograph at theNordic Optical Telescope and with HIRES at Keck I. During these years FUOri remained about 1 mag (in B) below its 1938-39 maximum brightness,but V1057 Cyg (B~10.5 at peak in 1970-1971) faded from about 13.5 to14.9 and then recovered slightly. Their photospheric spectra resemblethat of a rotationally broadened, slightly veiled supergiant of abouttype G0 Ib, with veqsini=70 km s-1 for FU Ori, and55 km s-1 for V1057 Cyg. As V1057 Cyg faded, P Cyg structurein Hα and the IR Ca II lines strengthened and a complexshortward-displaced shell spectrum of low-excitation lines of theneutral metals (including Li I and Rb I) increased in strength,disappeared in 1999, and reappeared in 2001. Several SOFIN runs extendedover a number of successive nights so that a search for rapid and cyclicchanges in the spectra was possible. These spectra show rapidnight-to-night changes in the wind structure of FU Ori at Hα,including clear evidence of sporadic infall. The equivalent width of theP Cyg absorption varied cyclically with a period of 14.8 days, withphase stability maintained over three seasons. This is believed to bethe rotation period of FU Ori. The internal structure of itsphotospheric lines also varies cyclically, but with a period of 3.54days. A similar variation may be present in V1057 Cyg, but the data aremuch noisier and that result uncertain. As V1057 Cyg has faded and thecontinuum level fallen, the emission lines of a preexistinglow-excitation chromosphere have emerged. Therefore we believe that the``line doubling'' in V1057 Cyg is produced by these central emissioncores in the absorption lines, not by orbital motion in an inclinedKeplerian disk. No convincing dependence of veqsini onwavelength or excitation potential was detected in either FU Ori orV1057 Cyg, again contrary to expectation for a self-luminous accretiondisk. It was found also that certain critical lines in the near infraredare not accounted for by synthetic disk spectra. It is concluded that arapidly rotating star near the edge of stability, as proposed by Larson,can better account for these observations. The possibility is alsoconsidered that FUor eruptions are not a property of ordinary T Tauristars but may be confined to a special subspecies of rapidly rotatingpre-main-sequence stars having powerful quasi-permanent winds.

Observations of Rotationally Resolved C3 in Translucent Sight Lines
The rotationally resolved spectrum of theA1Πu<--X1Σ+g000-000 transition of C3, centered at 4051.6 Å, hasbeen observed along 10 translucent lines of sight. To interpret thesespectra, a new method for the determination of column densities andanalysis of excitation profiles involving the simulation and fitting ofobserved spectra has been developed. The populations of lower rotationallevels (J<=14) in C3 are best fitted by thermaldistributions that are consistent with the kinetic temperaturesdetermined from the excitation profile of C2. Just as in thecase of C2, higher rotational levels (J>14) ofC3 show increased nonthermal population distributions inclouds that have been determined to have total gas densities below ~500cm-3.

Submit a new article

Related links

  • - No Links Found -
Submit a new link

Member of following groups:

Observation and Astrometry data

Right ascension:03h58m57.90s
Apparent magnitude:4.04
Distance:543.478 parsecs
Proper motion RA:1.5
Proper motion Dec:2.1
B-T magnitude:4.002
V-T magnitude:4.026

Catalogs and designations:
Proper NamesMenkib
Bayerξ Per
Flamsteed46 Per
HD 1989HD 24912
TYCHO-2 2000TYC 2369-2273-1
USNO-A2.0USNO-A2 1200-01876437
BSC 1991HR 1228
HIPHIP 18614

→ Request more catalogs and designations from VizieR