Home     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Astro Photo     The Collection     Forum     Blog New!     FAQ     Login  

NGC 691


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

The Hα Galaxy Survey . III. Constraints on supernova progenitors from spatial correlations with Hα emission
Aims.We attempt to constrain progenitors of the different types ofsupernovae from their spatial distributions relative to star formationregions in their host galaxies, as traced by Hα + [Nii] lineemission. Methods: .We analyse 63 supernovae which have occurredwithin galaxies from our Hα survey of the local Universe. Threestatistical tests are used, based on pixel statistics, Hα radialgrowth curves, and total galaxy emission-line fluxes. Results:.Many type II supernovae come from regions of low or zero emission lineflux, and more than would be expected if the latter accurately traceshigh-mass star formation. We interpret this excess as a 40% "Runaway"fraction in the progenitor stars. Supernovae of types Ib and Ic doappear to trace star formation activity, with a much higher fractioncoming from the centres of bright star formation regions than is thecase for the type II supernovae. Type Ia supernovae overall show a weakcorrelation with locations of current star formation, but there isevidence that a significant minority, up to about 40%, may be linked tothe young stellar population. The radial distribution of allcore-collapse supernovae (types Ib, Ic and II) closely follows that ofthe line emission and hence star formation in their host galaxies, apartfrom a central deficiency which is less marked for supernovae of typesIb and Ic than for those of type II. Core-collapse supernova ratesoverall are consistent with being proportional to galaxy totalluminosities and star formation rates; however, within this total thetype Ib and Ic supernovae show a moderate bias towards more luminoushost galaxies, and type II supernovae a slight bias towardslower-luminosity hosts.

Supernova 2005W in NGC 691
IAUC 8486 available at Central Bureau for Astronomical Telegrams.

Supernova 2005W in NGC 691
IAUC 8479 available at Central Bureau for Astronomical Telegrams.

Supernova 2005W in NGC 691
IAUC 8475 available at Central Bureau for Astronomical Telegrams.

The Westerbork HI survey of spiral and irregular galaxies. III. HI observations of early-type disk galaxies
We present Hi observations of 68 early-type disk galaxies from the WHISPsurvey. They have morphological types between S0 and Sab and absoluteB-band magnitudes between -14 and -22. These galaxies form the massive,high surface-brightness extreme of the disk galaxy population, few ofwhich have been imaged in Hi before. The Hi properties of the galaxiesin our sample span a large range; the average values of MHI/LB and DH I/D25 are comparableto the ones found in later-type spirals, but the dispersions around themean are larger. No significant differences are found between the S0/S0aand the Sa/Sab galaxies. Our early-type disk galaxies follow the same Himass-diameter relation as later-type spiral galaxies, but theireffective Hi surface densities are slightly lower than those found inlater-type systems. In some galaxies, distinct rings of Hi emissioncoincide with regions of enhanced star formation, even though theaverage gas densities are far below the threshold of star formationderived by Kennicutt (1989, ApJ, 344, 685). Apparently, additionalmechanisms, as yet unknown, regulate star formation at low surfacedensities. Many of the galaxies in our sample have lopsided gasmorphologies; in most cases this can be linked to recent or ongoinginteractions or merger events. Asymmetries are rare in quiescentgalaxies. Kinematic lopsidedness is rare, both in interacting andisolated systems. In the appendix, we present an atlas of the Hiobservations: for all galaxies we show Hi surface density maps, globalprofiles, velocity fields and radial surface density profiles.

The ISOPHOT 170 μm Serendipity Survey II. The catalog of optically identified galaxies%
The ISOPHOT Serendipity Sky Survey strip-scanning measurements covering≈15% of the far-infrared (FIR) sky at 170 μm were searched forcompact sources associated with optically identified galaxies. CompactSerendipity Survey sources with a high signal-to-noise ratio in at leasttwo ISOPHOT C200 detector pixels were selected that have a positionalassociation with a galaxy identification in the NED and/or Simbaddatabases and a galaxy counterpart visible on the Digitized Sky Surveyplates. A catalog with 170 μm fluxes for more than 1900 galaxies hasbeen established, 200 of which were measured several times. The faintest170 μm fluxes reach values just below 0.5 Jy, while the brightest,already somewhat extended galaxies have fluxes up to ≈600 Jy. For thevast majority of listed galaxies, the 170 μm fluxes were measured forthe first time. While most of the galaxies are spirals, about 70 of thesources are classified as ellipticals or lenticulars. This is the onlycurrently available large-scale galaxy catalog containing a sufficientnumber of sources with 170 μm fluxes to allow further statisticalstudies of various FIR properties.Based on observations with ISO, an ESA project with instruments fundedby ESA Member States (especially the PI countries: France, Germany, TheNetherlands and the UK) and with the participation of ISAS and NASA.Members of the Consortium on the ISOPHOT Serendipity Survey (CISS) areMPIA Heidelberg, ESA ISO SOC Villafranca, AIP Potsdam, IPAC Pasadena,Imperial College London.Full Table 4 and Table 6 are only available in electronic form at theCDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/422/39

The Hα galaxy survey. I. The galaxy sample, Hα narrow-band observations and star formation parameters for 334 galaxies
We discuss the selection and observations of a large sample of nearbygalaxies, which we are using to quantify the star formation activity inthe local Universe. The sample consists of 334 galaxies across allHubble types from S0/a to Im and with recession velocities of between 0and 3000 km s-1. The basic data for each galaxy are narrowband H\alpha +[NII] and R-band imaging, from which we derive starformation rates, H\alpha +[NII] equivalent widths and surfacebrightnesses, and R-band total magnitudes. A strong correlation is foundbetween total star formation rate and Hubble type, with the strongeststar formation in isolated galaxies occurring in Sc and Sbc types. Moresurprisingly, no significant trend is found between H\alpha +[NII]equivalent width and galaxy R-band luminosity. More detailed analyses ofthe data set presented here will be described in subsequent papers.Based on observations made with the Jacobus Kapteyn Telescope operatedon the island of La Palma by the Isaac Newton Group in the SpanishObservatorio del Roque de los Muchachos of the Instituto deAstrofísica de Canarias.The full version of Table \ref{tab3} is available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/414/23 Reduced image datafor this survey can be downloaded fromhttp://www.astro.livjm.ac.uk/HaGS/

The luminous and dark matter content of disk galaxies
We have compiled a sample of disk galaxies with available photometry inthe B and K bands, velocity line-widths and HI integral fluxes. Severalparameters that trace the luminous, baryonic and dark matter contentswere inferred. We investigated how these parameters vary with differentgalaxy properties, and compared the results with predictions of galaxyevolutionary models in the context of the Λ Cold Dark Matter(ΛCDM) cosmogony. The ratio of disk-to-total maximum circularvelocity, (Vd,m/Vt,m), depends mainly on thecentral disk surface density Σd,0 (or surfacebrightness, SB), increasing roughly asΣd,00.15. While a fraction of high SBgalaxies have a (Vd,m/Vt,m) ratio corresponding tothe maximum disk solution, the low SB are completely dark matterdominated. The trend is similar for the models, although they haveslightly smaller (Vd,m/Vt,m) ratios thanobservations, in particular at the highest SBs and when small baryonfractions are used. The scatter in the(Vd,m/Vt,m)- Σd,0 plot is large.An analysis of residuals shows that (Vd,m/Vt,m)tends to decrease as the galaxy is redder, more luminous (massive), andof earlier type. The models allow us to explain the physics of theseresults, which imply a connexion between halo structure and luminousproperties. The dynamical-to-baryon mass and dynamical mass-to-light (Band K) ratios at a given radius were also estimated. All these ratios,for observations and models, decrease with Σd,0; (orSB) and do not correlate significantly with the galaxy scale, contraryto what has been reported in previous works, based on the analysis ofrotation curve shapes. We discuss this difference and state theimportance of solving the controversy of whether the dark and luminouscontents in disk galaxies depend on SB or luminosity. The broadagreement between the models and observations presented here regardingthe trends of the dynamical-to-baryon matter and mass-to-light ratioswith several galaxy properties favors the ΛCDM scenario. However,the excess of dark matter inside the optical region of disk galaxiesremains the main difficulty.Appendices A and B are only available in electronic form athttp://www.edpsciences.org. Table 1 is only available at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/412/633

Mass-to-light ratios from the fundamental plane of spiral galaxy discs
The best-fitting two-dimensional plane within the three-dimensionalspace of spiral galaxy disc observables (rotational velocityvrot, central disc surface brightnessμ0=-2.5logI0 and disc scalelength h) has beenconstructed. Applying the three-dimensional bisector method ofregression analysis to a sample of ~100 spiral galaxy discs that spanmore than 4magarcsec-2 in central disc surface brightnessyields vrot\proptoI0.50\pm0.050\,h0.77\pm 0.07 (B band)and vrot\proptoI0.43\pm0.040\,h0.69\pm 0.07 (R band).Contrary to popular belief, these results suggest that in the B band,the dynamical mass-to-light ratio (within four disc scalelengths) islargely independent of the surface brightness, varying as I0.00\pm0.100\,h0.54\pm 0.14. Consistentresults were obtained when the range of the analysis was truncated byexcluding the low-surface-brightness galaxies. Previous claims thatM/LBvaries withI-1/20,Bareshown to be misleading and/or caused by galaxy selection effects - notall low-surface-brightness disc galaxies are dark matter dominated. Thesituation is, however, different in the near-infrared whereLK'~v4 and M/LK' is shown to vary asI-1/20,K\prime. Theoretical studies ofspiral galaxy discs should therefore not assume a constant M/L ratiowithin any given passband. The B-band dynamical mass-to-light ratio(within four disc scalelengths) has no obvious correlation with (B-R)disc colour, while in the K' band it varies as -1.25+/-0.28(B-R).Combining the present observational data with recent galaxy modelpredictions implies that the logarithm of the stellar-to-dynamical massratio is not a constant value, but increases as discs become redder,varying as 1.70+/-0.28(B-R).

The UZC-SSRS2 Group Catalog
We apply a friends-of-friends algorithm to the combined Updated ZwickyCatalog and Southern Sky Redshift Survey to construct a catalog of 1168groups of galaxies; 411 of these groups have five or more members withinthe redshift survey. The group catalog covers 4.69 sr, and all groupsexceed the number density contrast threshold, δρ/ρ=80. Wedemonstrate that the groups catalog is homogeneous across the twounderlying redshift surveys; the catalog of groups and their membersthus provides a basis for other statistical studies of the large-scaledistribution of groups and their physical properties. The medianphysical properties of the groups are similar to those for groupsderived from independent surveys, including the ESO Key Programme andthe Las Campanas Redshift Survey. We include tables of groups and theirmembers.

Optical Color Gradients in Star-forming Ring Galaxies
We compute radial color gradients produced by an outwardly propagatingcircular wave of star formation and compare our results with colorgradients observed in the classical ring galaxy, the ``Cartwheel.'' Weinvoke two independent models of star formation in the ring galaxies.The first one is the conventional density wave scenario, in which anintruder galaxy creates a radially propagating density wave accompaniedby an enhanced star formation following the Schmidt's law. The secondscenario is a pure self-propagating star formation model, in which theintruder sets off only the first burst of stars at the point of impact.Both models give essentially the same results. Systematic reddening ofB-V, V-K colors toward the center, such as that observed in theCartwheel, can be obtained only if the abundance of heavy elements inthe star-forming gas is a few times below solar. The B-V and V-K colorgradients observed in the Cartwheel can be explained as a result ofmixing of stellar populations born in a star-forming wave propagatingthrough a low-metallicity gaseous disk, and a preexisting stellar diskof the size of the gaseous disk with color properties typical to thoseobserved in nearby disk galaxies.

An Investigation into the Prominence of Spiral Galaxy Bulges
From a diameter-limited sample of 86 low-inclination (face-on) spiralgalaxies, the bulge-to-disk size and luminosity ratios and otherquantitative measurements for the prominence of the bulge are derived.The bulge and disk parameters have been estimated using aseeing-convolved Sérsic r1/n bulge and aseeing-convolved exponential disk that were fitted to the optical (B, R,and I) and near-infrared (K) galaxy light profiles. In general,early-type spiral galaxy bulges have Sérsic values of n>1, andlate-type spiral galaxy bulges have values of n<1. In the B band,only eight galaxies have a bulge shape parameter n consistent with theexponential value 1, and only five galaxies do in the K band. Use of theexponential bulge model is shown to restrict the range ofre/h and B/D values by more than a factor of 2. Applicationof the r1/n bulge models, unlike exponential bulge models,results in a larger mean re/h ratio for the early-type spiralgalaxies than for the late-type spiral galaxies, although this result isshown not to be statistically significant. The mean B/D luminosity ratiois, however, significantly larger (>3 σ) for the early-typespirals than for the late-type spirals. Two new parameters areintroduced to measure the prominence of the bulge. The first is thedifference between the central surface brightness of the galaxy and thesurface brightness level at which the bulge and disk contribute equally.The other test uses the radius at which the contribution from the diskand bulge light are equal, normalized for the effect of intrinsicallydifferent galaxy sizes. Both of these parameters reveal that theearly-type spiral galaxies ``appear'' to have significantly (more than 2σ in all passbands) bigger and brighter bulges than late-typespiral galaxies. This apparent contradiction with the re/hvalues can be explained with an iceberg-like scenario, in which thebulges in late-type spiral galaxies are relatively submerged in theirdisk. This can be achieved by varying the relative stellar density whilemaintaining the same effective bulge-to-disk ratio. The B/D luminosityratio and the concentration index C31, in agreement with paststudies, are positively correlated and decrease as one moves along thespiral Hubble sequence toward later spiral galaxy types, although forgalaxies with large extended bulges the concentration index no longertraces the B/D luminosity ratio in a one-to-one fashion. A strong(Spearman's rank-order correlation coefficient, rs=0.80) andhighly significant positive correlation exists between the shape, n, ofthe bulge light profile and the bulge-to-disk luminosity ratio. Theabsolute bulge magnitude-logn diagram is used as a diagnostic tool forcomparative studies with dwarf elliptical and ordinary ellipticalgalaxies. At least in the B band these objects occupy distinctlydifferent regions of this parameter space. While the dwarf ellipticalgalaxies appear to be the faint extension to the brighter ellipticalgalaxies, the bulges of spiral galaxies do not; for a given luminositythey have a noticeably smaller shape parameter and hence a more dramaticdecline of stellar density at large radii.

The formation of galaxy bulges: Spectrophotometric constraints
We have measured Mg2, Fe 5270 and Fe 5335 spectrophotometricindices (LICK system) in the bulge of 89 galaxies, mostly spirals fromthe Héraudeau (\cite{her96}) sample. The indices are reduced to anull velocity dispersion and normalized to an aperture of 0.2h-1 kpc. The mean errors are 0.009 mag on Mg2, and0.3 Å on the iron indices. These measurements almost double theamount of similar data already available on spiral galaxies. Our dataconfirm the existence of the relation between Mg2, andsigma0, the central stellar velocity dispersion; we find aneven tighter relation between Mg2, andVmrot, the maximum rotational velocity of thegalaxy, deduced from HI observations. For the most massive bulges, thesecorrelations may be interpreted as a mass-metallicity relation. However,the presence of young stellar populations, traced by the detection of[OIII] lambda 5007 Å, emission, provides clear evidence that ageeffects do play a role. Since the contribution of the young populationis anti-correlated to the mass of the galaxy, it continues theMg2, vs. sigma0 , relation toward thelow-sigma0, region and globally increases its slope. We alsopresent evidence for a new positive correlation between Fe indices andsigma0, and for a significant correlation between theline-strength indices and the total or disk luminosity. We propose tomodel the whole sequence of bulges within the folowing framework: bulgesare composed of a primary population formed prior to the disk, duringthe initial collapse, and of a secondary population formed during itsevolution. The whole family of bulges can be classified into threeclasses: (A) the bulges dominated by young populations are generallysmall, have ionized gas, low velocity dispersion and low line strengths;(B) the bulges dominated by the primary population lie along themass-metallicity sequence defined for elliptical galaxies; and (C) thebulges where the secondary population is significant are lessMg-over-abundant than (B)-type bulges and deviate from theMg2, vs. sigma0, relation of elliptical galaxies.Based on observations collected at the Observatoire de Haute-Provence.Table 3 is presented in electronic form only at the CDS. Tables 1 and 2are also available form at the CDS, Strasbourg, via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/366/68

Nearby Optical Galaxies: Selection of the Sample and Identification of Groups
In this paper we describe the Nearby Optical Galaxy (NOG) sample, whichis a complete, distance-limited (cz<=6000 km s-1) andmagnitude-limited (B<=14) sample of ~7000 optical galaxies. Thesample covers 2/3 (8.27 sr) of the sky (|b|>20deg) andappears to have a good completeness in redshift (97%). We select thesample on the basis of homogenized corrected total blue magnitudes inorder to minimize systematic effects in galaxy sampling. We identify thegroups in this sample by means of both the hierarchical and thepercolation ``friends-of-friends'' methods. The resulting catalogs ofloose groups appear to be similar and are among the largest catalogs ofgroups currently available. Most of the NOG galaxies (~60%) are found tobe members of galaxy pairs (~580 pairs for a total of ~15% of objects)or groups with at least three members (~500 groups for a total of ~45%of objects). About 40% of galaxies are left ungrouped (field galaxies).We illustrate the main features of the NOG galaxy distribution. Comparedto previous optical and IRAS galaxy samples, the NOG provides a densersampling of the galaxy distribution in the nearby universe. Given itslarge sky coverage, the identification of groups, and its high-densitysampling, the NOG is suited to the analysis of the galaxy density fieldof the nearby universe, especially on small scales.

Arcsecond Positions of UGC Galaxies
We present accurate B1950 and J2000 positions for all confirmed galaxiesin the Uppsala General Catalog (UGC). The positions were measuredvisually from Digitized Sky Survey images with rms uncertaintiesσ<=[(1.2")2+(θ/100)2]1/2,where θ is the major-axis diameter. We compared each galaxymeasured with the original UGC description to ensure high reliability.The full position list is available in the electronic version only.

The I-Band Tully-Fisher Relation for SC Galaxies: 21 Centimeter H I Line Data
A compilation of 21 cm line spectral parameters specifically designedfor application of the Tully-Fisher (TF) distance method is presentedfor 1201 spiral galaxies, primarily field Sc galaxies, for which opticalI-band photometric imaging is also available. New H I line spectra havebeen obtained for 881 galaxies. For an additional 320 galaxies, spectraavailable in a digital archive have been reexamined to allow applicationof a single algorithm for the derivation of the TF velocity widthparameter. A velocity width algorithm is used that provides a robustmeasurement of rotational velocity and permits an estimate of the erroron that width taking into account the effects of instrumental broadeningand signal-to-noise. The digital data are used to establish regressionrelations between measurements of velocity widths using other commonprescriptions so that comparable widths can be derived throughconversion of values published in the literature. The uniform H I linewidths presented here provide the rotational velocity measurement to beused in deriving peculiar velocities via the TF method.

The I-Band Tully-Fisher Relation for SC Galaxies: Optical Imaging Data
Properties derived from the analysis of photometric I-band imagingobservations are presented for 1727 inclined spiral galaxies, mostly oftypes Sbc and Sc. The reduction, parameter extraction, and errorestimation procedures are discussed in detail. The asymptotic behaviorof the magnitude curve of growth and the radial variation in ellipticityand position angle are used in combination with the linearity of thesurface brightness falloff to fit the disk portion of the profile. TotalI-band magnitudes are calculated by extrapolating the detected surfacebrightness profile to a radius of eight disk scale lengths. Errors inthe magnitudes, typically ~0.04 mag, are dominated by uncertainties inthe sky subtraction and disk-fitting procedures. Comparison is made withthe similar imaging database of Mathewson, Ford, & Buchhorn, both aspresented originally by those authors and after reanalyzing theirdigital reduction files using identical disk-fitting procedures. Directcomparison is made of profile details for 292 galaxies observed incommon. Although some differences occur, good agreement is found,proving that the two data sets can be used in combination with onlyminor accommodation of those differences. The compilation of opticalproperties presented here is optimized for use in applications of theTully-Fisher relation as a secondary distance indicator in studies ofthe local peculiar velocity field.

Stellar kinematic data for the central region of spiral galaxies. II.
We present a second dataset of absorption spectroscopy on the innerregion of spiral galaxies. We have determined the central velocitydispersion for 42 Sa-Sc objects and, for 32 of them, stellar rotationcurves and velocity-dispersion profiles. Some of these profiles arelimited to the bulge, some others do reach a region dominated by theluminosity of the disk. These data are intended to provide basicmaterial for the study of the mass distribution and dynamical status inthe central regions of spiral galaxies. Although no elaboratebulge-and-disk photometric decomposition is performed, we estimate theeffects of limited resolution and contamination by disk light on thecentral velocity dispersion of the bulge. All the material presented inthis paper, in particular the spectra, is available on-line. Based onobservations collected at the Observatoire de Haute-Provence. Tables 2and 3 are presented in electronic form only; Tables 1 through 3 areavailable from the CDS, Strasbourg, via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Groups of galaxies. III. Some empirical characteristics.
Not Available

Catalogue of HI maps of galaxies. II. Analysis of the data
We use some of the maps of the catalogue presented in Paper I to providesome evidence for global conditions that must be fulfilled by thegalaxies to have extended hydrogen. For this purpose, we tried to findpossible connections between the HI gas extension and other propertiesof the galaxies (morphological type, surface brightness, gas density,etc.). With isophotal hydrogen diameters of a large sample, we couldobserve that optically smaller galaxies seem to have greater relative HIextensions. By means of the relation with the apparent HI surfacedensity, we found an expression that should provide a rough estimate ofthe gas extension. With respect to the dependence on morphological type,we could not find any significant correlation either for the real HIsurface density or the relative gas extension. Nevertheless, whereas forspiral and irregular galaxies the real HI surface density exhibits abroad range of values, the values are rather lower for elliptical and S0galaxies. Table 1 is also available in electronic form at the CDS viaanonymous ftp 130.79.128.5 or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Catalogue of HI maps of galaxies. I.
A catalogue is presented of galaxies having large-scale observations inthe HI line. This catalogue collects from the literature the informationthat characterizes the observations in the 21-cm line and the way thatthese data were presented by means of maps, graphics and tables, forshowing the distribution and kinematics of the gas. It containsfurthermore a measure of the HI extension that is detected at the levelof the maximum sensitivity reached in the observations. This catalogueis intended as a guide for references on the HI maps published in theliterature from 1953 to 1995 and is the basis for the analysis of thedata presented in Paper II. The catalogue is only available inelectronic form at the CDS via anonymous ftp 130.79.128.5 orhttp://cdsweb.u-strasbg.fr/Abstract.html

Total magnitude, radius, colour indices, colour gradients and photometric type of galaxies
We present a catalogue of aperture photometry of galaxies, in UBVRI,assembled from three different origins: (i) an update of the catalogueof Buta et al. (1995) (ii) published photometric profiles and (iii)aperture photometry performed on CCD images. We explored different setsof growth curves to fit these data: (i) The Sersic law, (ii) The net ofgrowth curves used for the preparation of the RC3 and (iii) A linearinterpolation between the de Vaucouleurs (r(1/4) ) and exponential laws.Finally we adopted the latter solution. Fitting these growth curves, wederive (1) the total magnitude, (2) the effective radius, (3) the colourindices and (4) gradients and (5) the photometric type of 5169 galaxies.The photometric type is defined to statistically match the revisedmorphologic type and parametrizes the shape of the growth curve. It iscoded from -9, for very concentrated galaxies, to +10, for diffusegalaxies. Based in part on observations collected at the Haute-ProvenceObservatory.

A catalogue of spatially resolved kinematics of galaxies: Bibliography
We present a catalogue of galaxies for which spatially resolved data ontheir internal kinematics have been published; there is no a priorirestriction regarding their morphological type. The catalogue lists thereferences to the articles where the data are published, as well as acoded description of these data: observed emission or absorption lines,velocity or velocity dispersion, radial profile or 2D field, positionangle. Tables 1, 2, and 3 are proposed in electronic form only, and areavailable from the CDS, via anonymous ftp to cdsarc.u-strasbg.fr (to130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

Gas Mass Fractions and the Evolution of Spiral Galaxies
We show that the gas mass fraction of spiral galaxies is stronglycorrelated with luminosity and surface brightness. It is not correlatedwith linear size. Gas fraction varies with luminosity and surfacebrightness at the same rate, indicating evolution at fixed size. Dimgalaxies are clearly less evolved than bright ones, having consumed only~ \frac {1}{2} of their gas. This resolves the gas consumption paradox,since there exist many galaxies with large gas reservoirs. Thesegas-rich galaxies must have formed the bulk of their stellar populationsin the last half of a Hubble time. The existence of such immaturegalaxies at z = 0 indicates that either galaxy formation is a lengthy oreven ongoing process, or the onset of significant star formation can bedelayed for arbitrary periods in tenuous gas disks.

Short 21-cm WSRT observations of spiral and irregular galaxies. HI properties.
We present the analysis of neutral hydrogen properties of 108 galaxies,based on short 21-cm observations with the Westerbork Synthesis RadioTelescope (WSRT). The results of two HI surveys are analysed toinvestigate the existence of relations between optical and HIproperties, like diameters, hydrogen masses and average surfacedensities. For all galaxies in our sample we find that the HI diameter,defined at a surface density level of 1Msun_/pc^2^, is largerthan the optical diameter, defined at the 25^th^mag/arcsec^2^ isophotallevel. The Hi-to-optical-diameter ratio does not depend on morphologicaltype or luminosity. The strongest, physically meaningful, correlationfor the sample of 108 galaxies is the one between logM_HI_ and logD_HI_,with a slope of 2. This implies that the HI surface density averagedover the whole HI disc is constant from galaxy to galaxy, independent ofluminosity or type. The radial HI surface density profiles are studiedusing the technique of principal component analysis. We find that about81% of the variation in the density profiles of galaxies can beexplained by two dimensions. The most dominant component can be relatedto "scale" and the second principal component accounts for the variancein the behaviour of the radial profile in the central parts of galaxies(i.e. "peak or depression") . The third component accounts for 7% of thevariation and is most likely responsible for bumps and wiggles in theobserved density profiles.

Near-infrared and optical broadband surface photometry of 86 face-on disk dominated galaxies. II. A two-dimensional method to determine bulge and disk parameters.
In this Paper I present a new two-dimensional decomposition technique,which models the surface photometry of a galaxy with an exponentiallight profile for both bulge and disk and, when necessary, with aFreeman bar. The new technique was tested for systematic errors on bothartificial and real data and compared with widely used one-dimensionaldecomposition techniques, where the luminosity profile of the galaxy isused. The comparisons indicate that a decomposition of thetwo-dimensional image of the galaxy with an exponential light profilefor both bulge and disk yields the most reproducible and representativebulge and disk parameters. An extensive error analysis was made todetermine the reliability of the model parameters. If the model with anexponential bulge profile is a reasonable description of a galaxy, themaximum errors in the derived model parameters are of order 20%. Theuncertainties in the model parameters will increase, if the exponentialbulge function is replaced by other often used bulge functions as the deVaucouleurs law. All decomposition methods were applied to the opticaland near-infrared data set presented by de Jong & van der Kruit(1994), which comprises 86 galaxies in six passbands.

Optical and I-band surface photometry of spiral galaxies. I. The data.
We present V- and I-band CCD surface photometry on 234 inclined Sa-Sdgalaxies, completed by similar data in B and R for a reduced subsample.In this first paper of a series, the reduction of the data is discussed,and several comparisons are made with other recent works. Radialprofiles are presented for the surface brightness and thecharacteristics of ellipses fitted to isophotes; global, effective, andisophotal parameters are listed. All the results are available inelectronic form.

An image database. II. Catalogue between δ=-30deg and δ=70deg.
A preliminary list of 68.040 galaxies was built from extraction of35.841 digitized images of the Palomar Sky Survey (Paper I). For eachgalaxy, the basic parameters are obtained: coordinates, diameter, axisratio, total magnitude, position angle. On this preliminary list, weapply severe selection rules to get a catalog of 28.000 galaxies, wellidentified and well documented. For each parameter, a comparison is madewith standard measurements. The accuracy of the raw photometricparameters is quite good despite of the simplicity of the method.Without any local correction, the standard error on the total magnitudeis about 0.5 magnitude up to a total magnitude of B_T_=17. Significantsecondary effects are detected concerning the magnitudes: distance toplate center effect and air-mass effect.

Short WSRT HI observations of spiral galaxies.
We have obtained short HI observations of 60 late type spiral galaxieswith the Westerbork Synthesis Radio Telescope (WSRT). Several HIproperties are presented, including the radial surface densitydistribution of HI and a position-velocity map. When possible these arecompared to those measured from single-dish observations. We confirmearlier results that there is no serious systematic difference betweenthe WSRT and single-dish observations in total flux and linewidths.

Near-infrared and optical broadband surface photometry of 86 face-on disk dominated galaxies. IV. Using color profiles to study stellar and dust content of galaxies.
The stellar and dust content of spiral galaxies as function of radiushas been investigated using near-infrared and optical broadband surfacephotometry of 86 face-on spiral galaxies. Colors of galaxies correlatewith the azimuthally averaged local surface brightness both within andamong galaxies, with the lower surface brightness regions being bluer.The colors formed from different passband combinations correlatestrongly indicating that they probably arise from the same physicalprocess. A 3D radiative transfer model was developed to calculate theeffect of dust absorption and scattering on the luminosity and colorprofiles of galaxies. Stellar synthesis models were used to investigatethe effects of the star formation history and the metallicity on thebroadband color profiles. Combining all optical and near-infrared datashows that the color gradients in this sample of face-on galaxies arebest explained by a combined stellar age and metallicity gradient acrossthe disk, with the outer regions being on average younger and of lowermetallicity. Dust reddening probably plays only a minor role, as thedust models cannot produce reddening profiles that are compatible withthe observations. The observed color differences implicate substantialM/Llambda_ differences, both within galaxies and amonggalaxies. The variations are such that the "missing light" problemderived from rotation fitting becomes even worse. Late-type galaxies(T>=6) have lower metallicities and are often of younger average agethan earlier types and have therefore an entirely differentM/Llambda_ in most passbands. The near-infrared passbands arerecommended for studies where the M/Llambda_ ratios shouldnot vary too much.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Aries
Right ascension:01h50m41.80s
Declination:+21°45'34.0"
Aparent dimensions:2.951′ × 2.042′

Catalogs and designations:
Proper Names
NGC 2000.0NGC 691
HYPERLEDA-IPGC 6793

→ Request more catalogs and designations from VizieR