Home     To Survive in the Universe    
    Why to Inhabit     Top Contributors     Astro Photo     The Collection     Forum     Blog New!     FAQ     Login  

NGC 3640



Upload your image

DSS Images   Other Images

Related articles

Peculiarities and populations in elliptical galaxies. III. Dating the last star formation event
Using 6 colours and 4 Lick line-indices we derive two-component modelsof the populations of ellipticals, involving a "primary" and a"juvenile" population. The first component is defined by the regressionsof indices against the central velocity dispersion found in Papers I andII for the {Nop} sample of non-peculiar objects. The second one isapproximated by an SSP, and the modeling derives its age A, metallicityZ and fractional V-luminosity q_V, the fractional mass qMbeing found therefrom. The model is designed for "blueish" peculiargalaxies, i.e. the {Pec} sample and NGC 2865 family in the terminologyof Paper I. The morphological peculiarities and the population anomalyare then believed to involve the same event, i.e. a merger plusstarburst. It is possible to improve the models in a few cases byintroducing diffuse dust (as suggested by far IR data), and/or by takinginto account the fact that Lick- and colour indices do not relate toidentical galaxy volumes. In most of the cases, the mass ratio of youngstars qM seems too small for the product of a recent majormerger: the events under consideration might be minor mergers bringing"the final touch" to the build-up of the structure of the E-type object.The same modeling has been successfully applied to blueish galaxies ofthe {Nop} sample, without morphological peculiarities however, tosupport the occurence of a distinct perturbing event. A few reddishobjects of the {Pec} sample (NGC 3923 family) and of the {Nop} sampleare also modeled, in terms of an excess of high metallicity stars, ordiffuse dust, or both, but the results are inconclusive.

The X-ray emission properties and the dichotomy in the central stellar cusp shapes of early-type galaxies
The Hubble Space Telescope has revealed a dichotomy in the centralsurface brightness profiles of early-type galaxies, which havesubsequently been grouped into two families: core, boxy, anisotropicsystems; and cuspy (`power-law'), discy, rotating ones. Here weinvestigate whether a dichotomy is also present in the X-ray propertiesof the two families. We consider both their total soft emission(LSX,tot), which is a measure of the galactic hot gascontent, and their nuclear hard emission (LHX,nuc), mostlycoming from Chandra observations, which is a measure of the nuclearactivity. At any optical luminosity, the highest LSX,totvalues are reached by core galaxies; this is explained by their beingthe central dominant galaxies of groups, subclusters or clusters, inmany of the logLSX,tot (ergs-1) >~ 41.5 cases.The highest LHX,nuc values, similar to those of classicalactive galactic nuclei (AGNs), in this sample are hosted only by core orintermediate galaxies; at low luminosity AGN levels, LHX,nucis independent of the central stellar profile shape. The presence ofoptical nuclei (also found by HST) is unrelated to the level ofLHX,nuc, even though the highest LHX,nuc are allassociated with optical nuclei. The implications of these findings forgalaxy evolution and accretion modalities at the present epoch arediscussed.

Group, field and isolated early-type galaxies - II. Global trends from nuclear data
We have derived ages, metallicities and enhanced-element ratios[α/Fe] for a sample of 83 early-type galaxies essentially ingroups, the field or isolated objects. The stellar-population propertiesderived for each galaxy correspond to the nuclear re/8aperture extraction. The median age found for Es is 5.8+/-0.6 Gyr andthe average metallicity is +0.37+/-0.03 dex. For S0s, the median age is3.0+/-0.6 Gyr and [Z/H]= 0.53+/-0.04 dex. We compare the distribution ofour galaxies in the Hβ-[MgFe] diagram with Fornax galaxies. Ourelliptical galaxies are 3-4 Gyr younger than Es in the Fornax cluster.We find that the galaxies lie in a plane defined by [Z/H]= 0.99logσ0- 0.46 log(age) - 1.60, or in linear terms Z~σ0× (age) -0.5. More massive (largerσ0) and older galaxies present, on average, large[α/Fe] values, and therefore must have undergone shorterstar-formation time-scales. Comparing group against field/isolatedgalaxies, it is not clear that environment plays an important role indetermining their stellar-population history. In particular, ourisolated galaxies show ages differing by more than 8 Gyr. Finally weexplore our large spectral coverage to derive log(O/H) metallicity fromthe Hα and NIIλ6584 and compare it with model-dependent[Z/H]. We find that the O/H abundances are similar for all galaxies, andwe can interpret it as if most chemical evolution has already finishedin these galaxies.

Group, field and isolated early-type galaxies - I. Observations and nuclear data
This is the first paper of a series on the investigation of stellarpopulation properties and galaxy evolution of an observationallyhomogeneous sample of early-type galaxies in groups, field and isolatedgalaxies.Here we present high signal-to-noise ratio (S/N) long-slit spectroscopyof 86 nearby elliptical and S0 galaxies. Eight of them are isolated,selected according to a rigorous criterion, which guarantees a genuinelow-density subsample. The present survey has the advantage of coveringa larger wavelength range than normally found in the literature, whichincludes [OIII]λ5007 and Hα, both lines important foremission correction. Among the 86 galaxies with S/N >= 15 (perresolution element, for re/8 central aperture), 57 have theirHβ-index corrected for emission (the average correction is 0.190Åin Hβ) and 42 galaxies reveal [OIII]λ5007 emission,of which 16 also show obvious Hα emission. Most of the galaxies inthe sample do not show obvious signs of disturbances nor tidal featuresin the morphologies, although 11 belong to the Arp catalogue of peculiargalaxies; only three of them (NGC 750, 751 and 3226) seem to be stronglyinteracting. We present the measurement of 25 central line-strengthindices calibrated to the Lick/IDS system. Kinematic information isobtained for the sample. We analyse the line-strength index versusvelocity dispersion relations for our sample of mainly low-densityenvironment galaxies, and compare the slope of the relations withcluster galaxies from the literature. Our main findings are that theindex-σ0 relations presented for low-density regionsare not significantly different from those of cluster E/S0s. The slopeof the index-σ0 relations does not seem to change forearly-type galaxies of different environmental densities, but thescatter of the relations seems larger for group, field and isolatedgalaxies than for cluster galaxies.

On the Relation between Circular Velocity and Central Velocity Dispersion in High and Low Surface Brightness Galaxies
In order to investigate the correlation between the circular velocityVc and the central velocity dispersion of the spheroidalcomponent σc, we analyzed these quantities for a sampleof 40 high surface brightness (HSB) disk galaxies, eight giant lowsurface brightness (LSB) spiral galaxies, and 24 elliptical galaxiescharacterized by flat rotation curves. Galaxies have been selected tohave a velocity gradient <=2 km s-1 kpc-1 forR>=0.35R25. We used these data to better define theprevious Vc-σc correlation for spiralgalaxies (which turned out to be HSB) and elliptical galaxies,especially at the lower end of the σc values. We findthat the Vc-σc relation is described by alinear law out to velocity dispersions as low as σc~50km s-1, while in previous works a power law was adopted forgalaxies with σc>80 km s-1. Ellipticalgalaxies with Vc based on dynamical models or directlyderived from the H I rotation curves follow the same relation as the HSBgalaxies in the Vc-σc plane. On the otherhand, the LSB galaxies follow a different relation, since most of themshow either higher Vc or lower σc withrespect to the HSB galaxies. This argues against the relevance of baryoncollapse to the radial density profile of the dark matter halos of LSBgalaxies. Moreover, if the Vc-σc relation isequivalent to one between the mass of the dark matter halo and that ofthe supermassive black hole, then these results suggest that the LSBgalaxies host a supermassive black hole (SMBH) with a smaller masscompared to HSB galaxies with an equal dark matter halo. On the otherhand, if the fundamental correlation of SMBH mass is with the halocircular velocity, then LSB galaxies should have larger black holemasses for a given bulge dispersion. Elliptical galaxies withVc derived from H I data and LSB galaxies were not consideredin previous studies.Based on observations made with European Southern Observatory telescopesat the Paranal Observatory under programs 67.B-0283, 69.B-0573, and70.B-0171.

Star Formation Histories of Nearby Elliptical Galaxies. I. Volume-Limited Sample
This work presents high signal-to-noise ratio spectroscopic observationsof a representative sample of nearby elliptical galaxies. Theseobservations provide a strong test of models for the formation ofelliptical galaxies and their star formation histories. Combining thesedata with the González data set, a volume-limited sample of 45galaxies has been defined. Results are in agreement with previousstudies: the existence of the metallicity hyperplane and the Z-plane ofTrager and coworkers is confirmed, and the distribution is clearly dueto physical variations in stellar population parameters and notmeasurement uncertainty. Trends between stellar population parametersand galaxy structural parameters suggest that angular momentum maydetermine the chemical abundance of a galaxy at a given mass.

The Centers of Early-Type Galaxies with Hubble Space Telescope. V. New WFPC2 Photometry
We present observations of 77 early-type galaxies imaged with the PC1CCD of the Hubble Space Telescope (HST) WFPC2. ``Nuker-law'' parametricfits to the surface brightness profiles are used to classify the centralstructure into ``core'' or ``power-law'' forms. Core galaxies aretypically rounder than power-law galaxies. Nearly all power-law galaxieswith central ellipticities ɛ>=0.3 have stellar disks,implying that disks are present in power-law galaxies withɛ<0.3 but are not visible because of unfavorable geometry. Afew low-luminosity flattened core galaxies also have disks; these may betransition forms from power-law galaxies to more luminous core galaxies,which lack disks. Several core galaxies have strong isophote twistsinterior to their break radii, although power-law galaxies have interiortwists of similar physical significance when the photometricperturbations implied by the twists are evaluated. Central colorgradients are typically consistent with the envelope gradients; coregalaxies have somewhat weaker color gradients than power-law galaxies.Nuclei are found in 29% of the core galaxies and 60% of the power-lawgalaxies. Nuclei are typically bluer than the surrounding galaxy. Whilesome nuclei are associated with active galactic nuclei (AGNs), just asmany are not; conversely, not all galaxies known to have a low-level AGNexhibit detectable nuclei in the broadband filters. NGC 4073 and 4382are found to have central minima in their intrinsic starlightdistributions; NGC 4382 resembles the double nucleus of M31. In general,the peak brightness location is coincident with the photocenter of thecore to a typical physical scale of <1 pc. Five galaxies, however,have centers significantly displaced from their surrounding cores; thesemay be unresolved asymmetric double nuclei. Finally, as noted byprevious authors, central dust is visible in about half of the galaxies.The presence and strength of dust correlates with nuclear emission;thus, dust may outline gas that is falling into the central black hole.The prevalence of dust and its morphology suggest that dust clouds form,settle to the center, and disappear repeatedly on ~108 yrtimescales. We discuss the hypothesis that cores are created by thedecay of a massive black hole binary formed in a merger. Apart fromtheir brightness profiles, there are no strong differences between coregalaxies and power-law galaxies that demand this scenario; however, therounder shapes of core, their lack of disks, and their reduced colorgradients may be consistent with it.Based on observations made with the NASA/ESA Hubble Space Telescope,obtained at the Space Telescope Science Institute, which is operated bythe Association of Universities for Research in Astronomy (AURA), Inc.,under NASA contract NAS 5-26555. These observations are associated withGO and GTO proposals 5236, 5446, 5454, 5512, 5943, 5990, 5999, 6099,6386, 6554, 6587, 6633, 7468, 8683, and 9107.

Radio sources in low-luminosity active galactic nuclei. IV. Radio luminosity function, importance of jet power, and radio properties of the complete Palomar sample
We present the completed results of a high resolution radio imagingsurvey of all ( 200) low-luminosity active galactic nuclei (LLAGNs) andAGNs in the Palomar Spectroscopic Sample of all ( 488) bright northerngalaxies. The high incidences of pc-scale radio nuclei, with impliedbrightness temperatures ≳107 K, and sub-parsec jetsargue for accreting black holes in ≳50% of all LINERs andlow-luminosity Seyferts; there is no evidence against all LLAGNs beingmini-AGNs. The detected parsec-scale radio nuclei are preferentiallyfound in massive ellipticals and in type 1 nuclei (i.e. nuclei withbroad Hα emission). The radio luminosity function (RLF) of PalomarSample LLAGNs and AGNs extends three orders of magnitude below, and iscontinuous with, that of “classical” AGNs. We find marginalevidence for a low-luminosity turnover in the RLF; nevertheless LLAGNsare responsible for a significant fraction of present day massaccretion. Adopting a model of a relativistic jet from Falcke &Biermann, we show that the accretion power output in LLAGNs is dominatedby the kinetic power in the observed jets rather than the radiatedbolometric luminosity. The Palomar LLAGNs and AGNs follow the samescaling between jet kinetic power and narrow line region (NLR)luminosity as the parsec to kilo-parsec jets in powerful radio galaxies.Eddington ratios {l_Edd} (=L_Emitted/L_Eddington) of≤10-1{-}10-5 are implied in jet models of theradio emission. We find evidence that, in analogy to Galactic black holecandidates, LINERs are in a “low/hard” state (gas poornuclei, low Eddington ratio, ability to launch collimated jets) whilelow-luminosity Seyferts are in a “high” state (gas richnuclei, higher Eddington ratio, less likely to launch collimated jets).In addition to dominating the radiated bolometric luminosity of thenucleus, the radio jets are energetically more significant thansupernovae in the host galaxies, and are potentially able to depositsufficient energy into the innermost parsecs to significantly slow thegas supply to the accretion disk.

Peculiarities and populations in elliptical galaxies. II. Visual-near IR colours as population indices
As a complement to the data collected and discussed in Paper I of thisseries, 2MASS near-IR images have been used, in connection withavailable V light aperture photometry, to derive the colours V-J, V-K,J-H and J-K within the effective aperture A_e: nearly the same completesample of 110 E-type galaxies is treated. In Paper I these wereclassified, based on morphological criteria, into the ``peculiar'' (orPec) and ``normal'' (or Nop) subsamples. For the Nop subsample, thederived colour indices are tightly related to the galaxy masses, asmeasured by the central velocity dispersion σ0,although with rather small slopes as regards J-H and J-K. For the Pecsubsample, the V-J and V-K colours behave as UBV and line-indices: partof the objects show blue residuals from the appropriatecolour-σ0 regression, which is evidence of a youngerpopulation mixed with the ``normal'' one traced by the Nop regressions;the other shows no deviations from the Nop subsample. The distinctionamong Pec objects between the YP family (NGC 2865 type), and the NP one(NGC 3923 type), is statistically supported, and generally confirmed inspecific cases.Based in part on observations collected at the Observatoire deHaute-Provence.Table 4 is only available in electonic form at the CDS via anonymous ftpto cdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/429/819

The Group Evolution Multiwavelength Study (GEMS): bimodal luminosity functions in galaxy groups
We present B- and R-band luminosity functions (LFs) for a sample of 25nearby groups of galaxies. We find that the LFs of the groups with lowX-ray luminosity (LX < 1041.7 ergs-1) are significantly different from those of the X-raybrighter groups, showing a prominent dip around MB=-18. Whileboth categories show lack of late-type galaxies in their centralregions, X-ray dim groups also show a more marked concentration ofoptical luminosity towards the centre. A toy simulation shows that inthe low velocity dispersion environment, as in the X-ray dim group,dynamical friction would facilitate more rapid merging, thus depletingintermediate-luminosity galaxies to form a few giant central galaxies,resulting in the prominent dip seen in our LFs. We suggest that X-raydim (or low velocity dispersion) groups are the present sites of rapiddynamical evolution rather than their X-ray bright counterparts, and maybe the modern precursors of fossil groups. We predict that these groupsof low velocity dispersion would harbour younger stellar populationsthan groups or clusters with higher velocity dispersion.

Nuclear activity and the dynamics of elliptical galaxies
This Letter looks for any correlation between the internal dynamics ofelliptical galaxies and the relatively mild nuclear activity found inmany such systems. We show that there is such a relation in the sensethat the active ellipticals tend to be significantly less rotationallysupported than their inactive cousins. The correlation can partly berelated to the galaxies' luminosities: the brightest galaxies tend to bemore active and less rotationally supported. However, even at lowerluminosities the active and inactive galaxies seem to havesystematically different dynamics. This variation suggests that thereare significant large-scale structural differences between active andinactive elliptical galaxies, and hence that the existence of both typesof system cannot just be the result of random sporadic nuclear activity.

Star formation history in early-type galaxies - I. The line absorption indices diagnostics
To unravel the formation mechanism and the evolutionary history ofelliptical galaxies (EGs) is one of the goals of modern astrophysics. Ina simplified picture of the issue, the question to be answered iswhether they have formed by hierarchical merging of pre-existingsubstructures (maybe disc galaxies) made of stars and gas, with eachmerging event probably accompanied by strong star formation, orconversely, whether they originated from the early aggregation of lumpsof gas turned into stars in the remote past via a burst-like episodeever since followed by quiescence so as to mimic a sort of monolithicprocess. Even if the two alternatives seem to oppose each other,actually they may both contribute to shaping the final properties of EGsas seen today. Are there distinct signatures of the underlying dominantprocess in the observational data? To this aim we have examined the lineabsorption indices on the Lick system of the normal, field EGs of Tragerand the interacting EGs (pair- and shell-objects) of Longhetti et al.The data show that both normal, field and interacting galaxies have thesame scattered but smooth distribution in the Hβ versus [MgFe]plane even if the interacting ones show a more pronounced tail towardhigh Hβ values. This may suggest that a common physical cause is atthe origin of their distribution. There are two straightforwardinterpretations of increasing complexity. (i) EGs span true large rangesof ages and metallicities. A young age is the signature of theaggregation mechanism, each event accompanied by metal enrichment. Thissimple scheme cannot, however, explain other spectro-photometricproperties of EGs and has to be discarded. (ii) The bulk population ofstars is old but subsequent episodes of star formation scatter the EGsin the diagnostic planes. However, this scheme would predict anoutstanding clump at low Hβ values, contrary to what is observed.The model can be cured by supposing that the primary star formationactivity lasted for a significant fraction of the Hubble time (5<=T<= 13 Gyr) accompanied by global metal enrichment. The`younger' galaxies are more metal-rich. The later burst of starformation should be small otherwise too many high-Hβ objects wouldbe observed. Therefore, the distribution of normal, pair- andshell-galaxies in the Hβ versus [MgFe] plane is due to global metalenrichment. Even though the above schemes provide a formal explanation,they seem to be too demanding because of the many ad hoc ingredientsthat have to be introduced. Furthermore, they neglect theobservationally grounded hint that the stellar content of EGs is likelyto be enhanced in α-elements with [α/Fe] ranging from 0.1 to0.4 dex. Here we propose a new scheme, in which the bulk dispersion ofgalaxies in the Hβ versus [MgFe] plane is caused by a differentmean degree of enhancement. In this model, neither the large age rangesnor the universal enrichment law for the old component are required andthe observed distribution along Hβ is naturally recovered.Furthermore, later bursts of stellar activity are a rare event,involving only those galaxies with very high Hβ (roughly >2.5).Finally, simulations of the scatter in broad-band colours of EGs seem toconfirm that the bulk stars have formed in the remote past, and thatmergers and companion star formation in a recent past are not likely,unless the intensity of the secondary activity is very small.

The GEMS project: X-ray analysis and statistical properties of the group sample
The Group Evolution Multiwavelength Study (GEMS) involves amultiwavelength study of a sample of 60 galaxy groups, chosen to span awide range of group properties. Substantial ROSAT Position SensitiveProportional Counter (PSPC) observations, available for all of thesegroups, are used to characterize the state of the intergalactic mediumin each. We present the results of a uniform analysis of these ROSATdata and a statistical investigation of the relationship between X-rayand optical properties across the sample. Our analysis improves inseveral respects on previous work: (i) we distinguish between systems inwhich the hot gas is a group-scale medium and those in which it appearsto be just a hot halo associated with a central galaxy; (ii) weextrapolate X-ray luminosities to a fixed overdensity radius(r500) using fitted surface brightness models, in order toavoid biases arising from the fact that cooler systems are detectable tosmaller radii, and (iii) optical properties have been rederived in auniform manner from the NASA Extragalactic Database, rather than relyingon the data in the disparate collection of group catalogues from whichour systems are drawn.The steepening of the LX-TX relation in the groupregime reported previously is not seen in our sample, which fits well onto the cluster trend, albeit with large non-statistical scatter. Anumber of biases affect the fitting of regression lines under thesecircumstances, and until the impact of these has been thoroughlyinvestigated it seems best to regard the slope of the groupLX-TX relation as being poorly determined. Asignificant problem in comparing the properties of groups and clustersis the derivation of system radii, to allow different systems to becompared within regions having the same overdensity. We find evidencethat group velocity dispersion (σv) provides a veryunreliable measure of system mass (and hence radius), with a number ofgroups having remarkably low values of σv, given thatthey appear from their X-ray properties to be collapsed systems. Weconfirm that the surface brightness profiles of groups are significantlyflatter than those of clusters - the maximum value of theβfit parameter for our sample is 0.58, lower than thetypical value of 0.67 seen in clusters - however, we find no significanttendency within our sample for cooler groups to show flatter profiles.This result is inconsistent with simple universal pre-heating models.The morphology of the galaxies in the GEMS groups is correlated to theirX-ray properties in a number of ways: we confirm the very strongrelationship between X-ray emission and a dominant early-type centralgalaxy, which has been noted since the early X-ray studies of groups,and also find that spiral fraction is correlated with the temperature ofthe hot gas and hence the depth of the gravitational potential. A classof spiral-rich groups with little or no X-ray emission probablycorresponds to groups that have not yet fully collapsed.

Scaling relations in early-type galaxies belonging to groups
We present a photometric analysis of a large sample of early-typegalaxies in 16 nearby groups, imaged with the Wide-Field Camera on theIsaac Newton Telescope. Using a two-dimensional surface brightnessdecomposition routine, we fit Sersic (r1/n) and exponentialmodels to their bulge and disc components, respectively. Dividing thegalaxies into three subsamples according to the X-ray luminosities oftheir parent groups, we compare their photometric properties. Galaxiesin X-ray luminous groups tend to be larger and more luminous than thosein groups with undetected or low X-ray luminosities, but no significantdifferences in n are seen. Both normal and dwarf elliptical galaxies inthe central regions of groups are found to have cuspier profiles thantheir counterparts in group outskirts.Structural differences between dwarf and normal elliptical galaxies areapparent in terms of an offset between their `photometric planes' in thespace of n, re and μ0. Dwarf ellipticals arefound to populate a surface, with remarkably low scatter, in this spacewith significant curvature, somewhat similar to the surfaces of constantentropy proposed by Màrquez et al. Normal ellipticals are offsetfrom this distribution in a direction of higher specific entropy. Thismay indicate that the two populations are distinguished by the action ofgalaxy merging on larger galaxies.

Companions to Isolated Elliptical Galaxies: Revisiting the Bothun-Sullivan Sample
We investigate the number of physical companion galaxies for a sample ofrelatively isolated elliptical galaxies. The NASA/IPAC ExtragalacticDatabase (NED) has been used to reinvestigate the incidence of satellitegalaxies for a sample of 34 elliptical galaxies, first investigated byBothun & Sullivan using a visual inspection of Palomar Sky Surveyprints out to a projected search radius of 75 kpc. We have repeatedtheir original investigation using data cataloged in NED. Nine of theseelliptical galaxies appear to be members of galaxy clusters; theremaining sample of 25 galaxies reveals an average of +1.0+/-0.5apparent companions per galaxy within a projected search radius of 75kpc, in excess of two equal-area comparison regions displaced by 150-300kpc. This is significantly larger than the +0.12+/-0.42companions/galaxy found by Bothun & Sullivan for the identicalsample. Making use of published radial velocities, mostly availablesince the completion of the Bothun-Sullivan study, identifies thephysical companions and gives a somewhat lower estimate of +0.4companions per elliptical galaxy. This is still 3 times larger than theoriginal statistical study, but given the incomplete and heterogeneousnature of the survey redshifts in NED, it still yields a firm lowerlimit on the number (and identity) of physical companions. An expansionof the search radius out to 300 kpc, again restricted to sampling onlythose objects with known redshifts in NED, gives another lower limit of4.5 physical companions per galaxy. (Excluding five elliptical galaxiesin the Fornax Cluster, this average drops to 3.5 companions perelliptical.) These physical companions are individually identified andlisted, and the ensemble-averaged radial density distribution of theseassociated galaxies is presented. For the ensemble, the radial densitydistribution is found to have a falloff consistent withρ~R-0.5 out to approximately 150 kpc. For non-FornaxCluster companions the falloff continues out to the 300 kpc limit of thesurvey. The velocity dispersion of these companions is found to reach amaximum of 350 km s-1 at around 120 kpc, after which theyfall at a rate consistent with Keplerian falloff. This falloff may thenindicate the detection of a cut-off in the mass-density distribution inthe elliptical galaxies' dark matter halo at ~100 kpc.

Peculiarities and populations in elliptical galaxies. I. An old question revisited
Morphological peculiarities, as defined from isophote asymmetries andnumber of detected shells, jets or similar features, have been estimatedin a sample of 117 E classified galaxies, and qualified by an ad hocΣ2 index. The overall frequency of ``peculiar'' objects(Pec subsample) is 32.5%. It decreases with the cosmic density of theenvironment, being minimal for the Virgo cluster, the densestenvironment in the sampled volume. This environmental effect is strongerfor galaxies with relatively large Σ2.The Pec subsample objects are compared with ``normal'' objects (Nopsubsample) as regards their basic properties. Firstly, theysystematically deviate from the Fundamental Plane and the Faber-Jacksonrelation derived for the Nop subsample, being too bright for their mass.Secondly, the dust content of galaxies, as estimated from IRAS fluxes,are similar in both subsamples. Third, the same is true of the frequencyof Kinematically Distinct cores (KDC), suggesting that KDC andmorphological peculiarities do not result from the same events in thehistory of E-galaxies.Using the Nop sample alone, we obtain very tight reference relationsbetween stellar population indicators (U-B, B-V, B-R, V-I,Mg2, Hβ, , Mgb) and the central velocitydispersion σ0. The discussion of the residuals of theserelations allows us to classify the Pec galaxies in two families i.e.the YP or NGC 2865 family, and the NP or NGC 3923 one. Galaxies in thefirst group show consistent evidence for a younger stellar populationmixed with the old one, in agreement with classical results (Schweizeret al. \cite{Schweizer1990}; Schweizer & Seitzer\cite{Schweizer1992}). The second group, however, has ``normal``, orreddish, populations. It is remarkable that a fraction (circa 40%) ofmorphologically perturbed objects do not display any signature of ayoung population, either because the event responsible for thepecularity is too ancient, or because it did not produce significantstar formation (or eventually that the young sub-population has highmetallicity).A preliminary attempt is made to interpret the populations of Pecobjects by combining a young Single Stellar Population with a Nopgalaxy, with only limited success, perhaps largely due to uncertaintiesin the SSP indices used.Based in part on observations collected at the Observatoire deHaute-Provence.Figures \ref{fig1}-\ref{fig3} are only available in electronic form athttp://www.edpsciences.orgTable 10 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/423/833

Near-infrared imaging of ellipticals: surface brightness profiles and photometry
We present near-infrared K-band imaging of a large sample of candidatemerger remnant galaxies and Hickson Compact Group ellipticals. We derivelight profile indices, effective radii and surface brightnesses, as wellas total K-band magnitudes. We find that the light distributions of themerger remnant candidates are consistent with those of `normal'ellipticals, and scatter around a mean profile index of (1/n) = 0.20.Many of our sample galaxies have surface brightness profiles that arenot well described by a de Vaucouleurs law (1/n= 0.25), and we discussthe implications of this on the derived total magnitudes. Comparing thetotal K magnitudes calculated by extrapolating a de Vaucouleurs profileand those derived using a generalized Sérsic form, we find that asignificant bias is introduced if the de Vaucouleurs law is not a gooddescription of the actual light profile.

A Search for ``Dwarf'' Seyfert Nuclei. VI. Properties of Emission-Line Nuclei in Nearby Galaxies
We use the database from Paper III to quantify the global and nuclearproperties of emission-line nuclei in the Palomar spectroscopic surveyof nearby galaxies. We show that the host galaxies of Seyferts, LINERs,and transition objects share remarkably similar large-scale propertiesand local environments. The distinguishing traits emerge on nuclearscales. Compared with LINERs, Seyfert nuclei are an order of magnitudemore luminous and exhibit higher electron densities and internalextinction. We suggest that Seyfert galaxies possess characteristicallymore gas-rich circumnuclear regions and hence a more abundant fuelreservoir and plausibly higher accretion rates. The differences betweenthe ionization states of the narrow emission-line regions of Seyfertsand LINERs can be partly explained by the differences in their nebularproperties. Transition-type objects are consistent with being composite(LINER/H II) systems. With very few exceptions, the stellar populationwithin the central few hundred parsecs of the host galaxies is uniformlyold, a finding that presents a serious challenge to starburst orpost-starburst models for these objects. Seyferts and LINERs havevirtually indistinguishable velocity fields as inferred from their linewidths and line asymmetries. Transition nuclei tend to have narrowerlines and more ambiguous evidence for line asymmetries. All threeclasses of objects obey a strong correlation between line width and lineluminosity. We argue that the angular momentum content of circumnucleargas may be an important factor in determining whether a nucleus becomesactive. Finally, we discuss some possible complications for theunification model of Seyfert galaxies posed by our observations.

Redshift-Distance Survey of Early-Type Galaxies: Circular-Aperture Photometry
We present R-band CCD photometry for 1332 early-type galaxies, observedas part of the ENEAR survey of peculiar motions using early-typegalaxies in the nearby universe. Circular apertures are used to tracethe surface brightness profiles, which are then fitted by atwo-component bulge-disk model. From the fits, we obtain the structuralparameters required to estimate galaxy distances using theDn-σ and fundamental plane relations. We find thatabout 12% of the galaxies are well represented by a pure r1/4law, while 87% are best fitted by a two-component model. There are 356repeated observations of 257 galaxies obtained during different runsthat are used to derive statistical corrections and bring the data to acommon system. We also use these repeated observations to estimate ourinternal errors. The accuracy of our measurements are tested by thecomparison of 354 galaxies in common with other authors. Typical errorsin our measurements are 0.011 dex for logDn, 0.064 dex forlogre, 0.086 mag arcsec-2 for<μe>, and 0.09 for mRC,comparable to those estimated by other authors. The photometric datareported here represent one of the largest high-quality and uniformall-sky samples currently available for early-type galaxies in thenearby universe, especially suitable for peculiar motion studies.Based on observations at Cerro Tololo Inter-American Observatory (CTIO),National Optical Astronomy Observatory, which is operated by theAssociation of Universities for Research in Astronomy, Inc., undercooperative agreement with the National Science Foundation (NSF);European Southern Observatory (ESO); Fred Lawrence Whipple Observatory(FLWO); and the MDM Observatory on Kitt Peak.

A Search for H I in Five Elliptical Galaxies with Fine Structure
We report on VLA H I spectral line observations of five early-typegalaxies classified as optically peculiar because of the presence ofjets, ripples, or other optical fine structure. We detect H I within theprimary beam (30' half-power beamwidth) in four of the five systems.However, in only one case is this gas associated with the targetedelliptical galaxy. In the other cases the H I is associated with anearby gas-rich disk or dwarf galaxy. The one H I detection is for NGC7626, where we tentatively detect an H I cloud lying between 20 and 40kpc southwest of the galaxy center. Its origin is unclear. Our failureto detect obvious tidal H I features suggests that if thesefine-structure elliptical galaxies are remnants of disk galaxy mergers,either the progenitors were gas-poor or they are well evolved and anygaseous tidal features have dispersed and/or been converted into otherphases. Our targeted systems all reside in groups or clusters, and itseems likely that tidal H I is shorter lived in these environments thansuggested by studies of more isolated merger remnants.

A new catalogue of ISM content of normal galaxies
We have compiled a catalogue of the gas content for a sample of 1916galaxies, considered to be a fair representation of ``normality''. Thedefinition of a ``normal'' galaxy adopted in this work implies that wehave purposely excluded from the catalogue galaxies having distortedmorphology (such as interaction bridges, tails or lopsidedness) and/orany signature of peculiar kinematics (such as polar rings,counterrotating disks or other decoupled components). In contrast, wehave included systems hosting active galactic nuclei (AGN) in thecatalogue. This catalogue revises previous compendia on the ISM contentof galaxies published by \citet{bregman} and \citet{casoli}, andcompiles data available in the literature from several small samples ofgalaxies. Masses for warm dust, atomic and molecular gas, as well asX-ray luminosities have been converted to a uniform distance scale takenfrom the Catalogue of Principal Galaxies (PGC). We have used twodifferent normalization factors to explore the variation of the gascontent along the Hubble sequence: the blue luminosity (LB)and the square of linear diameter (D225). Ourcatalogue significantly improves the statistics of previous referencecatalogues and can be used in future studies to define a template ISMcontent for ``normal'' galaxies along the Hubble sequence. The cataloguecan be accessed on-line and is also available at the Centre desDonnées Stellaires (CDS).The catalogue is available in electronic form athttp://dipastro.pd.astro.it/galletta/ismcat and at the CDS via anonymousftp to\ cdsarc.u-strasbg.fr ( or via\http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/405/5

New UBVRI color distributions in E-type galaxies. II. Central and mean metallicities color distributions in E-type galaxies. II.
Central and mean metallicities are calculated for a sample of 40early-type galaxies, whose color gradients were reported in a previouspaper (Idiart et al. \cite{Idiart2002}). The present color-metallicitycalibration was derived from a grid of evolutionary models which fit thecolor-magnitude sequence of ellipticals in Coma and Virgo clusters. Themean metallicity gradient derived from our data is (Delta [Fe/H]/Deltalog r) = -0.26 +/- 0.08 and the mean sample average metallicity is<[Fe/H]> = 0.01 +/- 0.11 (rmsd). Central and mean metallicitiesare correlated with the central velocity dispersion, consistent with theinterpretation by metallicity variations of the color-magnitude sequenceand of color gradients. Age effects are also discussed, in particularconcerning the interpretation of the Hβ line strength in thoseobjects.Based partially on data collected at the Observatory of Haute-Provence.}

Galaxy cores as relics of black hole mergers
We investigate the hypothesis that the cores of elliptical galaxies andbulges are created from the binding energy liberated by the coalescenceof supermassive binary black holes during galaxy mergers. Assuming thatthe central density profiles of galaxies were initially steep powerlaws, ρ ~r -2 , we define the `mass deficit' as the massin stars that had to be removed from the nucleus in order to produce theobserved core. We use non-parametric deprojection to compute the massdeficit in a sample of 35 early-type galaxies with high-resolutionimaging data. We find that the mass deficit correlates well with themass of the nuclear black hole, consistent with the predictions ofmerger models. We argue that cores in haloes of non-interacting darkmatter particles should be comparable in size to those observed in thestars.

Early-type galaxy distances from the Fundamental Plane and surface brightness fluctuations
We compare two of the most popular methods for deriving distances toearly-type galaxies: the Fundamental Plane (FP) and surface brightnessfluctuations (SBF). Distances for 170 galaxies are compared. A third setof distances is provided by predictions derived from the density fieldof the IRAS redshift survey. Overall there is good agreement between thedifferent distance indicators. We investigate systematic trends in theresiduals of the three sets of distance comparisons. First, we find thatseveral nearby, low-luminosity, mainly S0 galaxies have systematicallylow FP distances. Because these galaxies also have Mg2indices among the lowest in the sample, we conclude that they deviatefrom the FP partly because of recent star formation and consequently lowmass-to-light ratios; differences in their internal velocity structuresmay also play a role. Secondly, we find some evidence that theground-based I -band SBF survey distances (Tonry et al. 2001) begin toshow a bias near the survey limit at , which is expected for this sortof distance-limited survey, but had not previously been demonstrated.Although SBF and FP distances are affected in opposite senses by errorsin the Galactic extinction estimates, we find no evidence for biases inthe distances due to Galactic extinction. The tie between theCepheid-calibrated SBF distances (Mpc) and the far-field calibrated FPdistances (kms-1 ) yields a Hubble constant , while thecomparison between SBF and the IRAS -reconstructed distances yields(independent errors only). Thus there is a marginal inconsistency in thedirect and IRAS -reconstructed ties to the Hubble flow (this can be seenindependently of the SBF distances). Possible explanations includesystematic errors in the redshift survey completeness estimates or inthe FP aperture corrections, but at this point the best estimate of H0 may come from a simple average of the above two estimates.After revising the SBF distances downward by 2.8 per cent to be inagreement with the final set of Key Project Cepheid distances (Freedmanet al.), we conclude that from early-type galaxies, where the seconderror bar represents the total systematic uncertainty in the distancezero-point. We also discuss the `fluctuation star count', recentlyintroduced by Tonry et al. (2001) as a less demanding alternative to forcalibrating SBF distances. The N -calibrated SBF method is akin to ahybrid SBF-FP distance indicator, and we find that the use of N actuallyimproves the SBF distances. Further study of the behaviour of thisquantity may provide an important new test for models of ellipticalgalaxy formation.

Nuclear Cusps and Cores in Early-Type Galaxies as Relics of Binary Black Hole Mergers
We present an analysis of the central cusp slopes and core parameters ofearly-type galaxies using a large database of surface brightnessprofiles obtained from Hubble Space Telescope observations. We examinethe relation between the central cusp slopes, core parameters, and blackhole masses in early-type galaxies, in light of two models that attemptto explain the formation of cores and density cusps via the dynamicalinfluence of black holes. Contrary to the expectations fromadiabatic-growth models, we find that the cusp slopes do not steepenwith increasing black hole mass fraction. Moreover, a comparison ofkinematic black hole mass measurements with the masses predicted by theadiabatic models shows that they overpredict the masses by a factor of~3. Simulations involving binary black hole mergers predict that boththe size of the core and the central mass deficit correlate with thefinal black hole mass. These relations are qualitatively supported bythe present data.

Bar Galaxies and Their Environments
The prints of the Palomar Sky Survey, luminosity classifications, andradial velocities were used to assign all northern Shapley-Ames galaxiesto either (1) field, (2) group, or (3) cluster environments. Thisinformation for 930 galaxies shows no evidence for a dependence of barfrequency on galaxy environment. This suggests that the formation of abar in a disk galaxy is mainly determined by the properties of theparent galaxy, rather than by the characteristics of its environment.

The UZC-SSRS2 Group Catalog
We apply a friends-of-friends algorithm to the combined Updated ZwickyCatalog and Southern Sky Redshift Survey to construct a catalog of 1168groups of galaxies; 411 of these groups have five or more members withinthe redshift survey. The group catalog covers 4.69 sr, and all groupsexceed the number density contrast threshold, δρ/ρ=80. Wedemonstrate that the groups catalog is homogeneous across the twounderlying redshift surveys; the catalog of groups and their membersthus provides a basis for other statistical studies of the large-scaledistribution of groups and their physical properties. The medianphysical properties of the groups are similar to those for groupsderived from independent surveys, including the ESO Key Programme andthe Las Campanas Redshift Survey. We include tables of groups and theirmembers.

New UBVRI colour distributions in E-type galaxies . I. The data
New colour distributions have been derived from wide field UBVRI framesfor 36 northern bright elliptical galaxies and a few lenticulars. Theclassical linear representations of colours against log r were derived,with some improvements in the accuracy of the zero point colours and ofthe gradients. The radial range of significant measurements was enlargedboth towards the galaxy center and towards the outskirts of each object.Thus, the ``central colours'', integrated within a radius of 3\arcsec,and the ``outermost colours'' averaged near the muV =24surface brightness could also be obtained. Some typical deviations ofcolour profiles from linearity are described. Colour-colour relations ofinterest are presented. Very tight correlations are found between theU-V colour and the Mg2 line-index, measured either at theGalaxian center or at the effective radius. Based in part onobservations collected at the Observatoire de Haute-Provence. Tables9-11 plus detailed tables for each object are available in electronicform at the CDS via anonymous ftp to cdsarc.u-strasbg.fr ( via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/383/30

The Colors of Globular Clusters
A compilation has been made of available data on the ratio of the numberof metal-rich ([Fe/H]>-1.0) to metal-poor ([Fe/H]<-1.0) clustersin various globular cluster systems. Among early-type galaxies of typesE, E/S0, and S0, the ratio of blue to red globular clusters is found tovary by almost 2 orders of magnitude. The data suggest that cD galaxieshave the widest range of evolutionary histories. The fraction ofmetal-rich red clusters is largest among early-type galaxies and appearsto decrease toward later Hubble types.

A catalogue and analysis of X-ray luminosities of early-type galaxies
We present a catalogue of X-ray luminosities for 401 early-typegalaxies, of which 136 are based on newly analysed ROSAT PSPC pointedobservations. The remaining luminosities are taken from the literatureand converted to a common energy band, spectral model and distancescale. Using this sample we fit the LX:LB relationfor early-type galaxies and find a best-fit slope for the catalogue of~2.2. We demonstrate the influence of group-dominant galaxies on the fitand present evidence that the relation is not well modelled by a singlepower-law fit. We also derive estimates of the contribution to galaxyX-ray luminosities from discrete-sources and conclude that they provideLdscr/LB~=29.5ergs-1LBsolar-1. Wecompare this result with luminosities from our catalogue. Lastly, weexamine the influence of environment on galaxy X-ray luminosity and onthe form of the LX:LB relation. We conclude thatalthough environment undoubtedly affects the X-ray properties ofindividual galaxies, particularly those in the centres of groups andclusters, it does not change the nature of whole populations.

Submit a new article

Related links

  • - No Links Found -
Submit a new link

Member of following groups:

Observation and Astrometry data

Right ascension:11h21m06.80s
Aparent dimensions:4.365′ × 3.802′

Catalogs and designations:
Proper Names
NGC 2000.0NGC 3640

→ Request more catalogs and designations from VizieR