Home     Sopravvivere Nell'Universo    
Services
    Perché adottare     Donatori     Astro Foto     La collezione     Forum     Blog New!     FAQ     Login  

NGC 1748


Contenuti

Immagini

Carica la tua immagine

DSS Images   Other Images


Articoli relazionati

Clustered Star Formation in the Small Magellanic Cloud. A Spitzer/IRAC View of the Star-Forming Region NGC 602/N 90
We present Spitzer/IRAC photometry on the star-forming H II region N 90,related to the young stellar association NGC 602 in the Small MagellanicCloud. Our photometry revealed bright mid-infrared sources, which weclassify with the use of a scheme based on templates and models of redsources in the Milky Way, and criteria recently developed from theSpitzer Survey of the SMC for the selection of candidate Young StellarObjects (YSOs). We detected 57 sources in all four IRAC channels in a6.2'×4.8' field of view centered on N 90; 22of these sources are classified as candidate YSOs. We compare thelocations of these objects with the position of optical sources recentlyfound in the same region with high-resolution HST/ACS imaging of NGC 602by Schmalzl and coworkers, and we find that 17 candidate YSOs have oneor more optical counterparts. All of these optical sources areidentified as pre-main-sequence stars, thus indicating ongoing clusteredstar formation events in the region. The positions of the detected YSOsand their related PMS clusters give a clear picture of the current starformation in N 90, according to which the young stellar associationphotoionizes the surrounding interstellar medium, revealing the H IInebula, and triggering sequential star formation events mainly along theeastern and southern rims of the formed cavity of the parental molecularcloud.Research supported by the Deutsche Forschungsgemeinschaft (GermanResearch Foundation).

On the Similarity between Cluster and Galactic Stellar Initial Mass Functions
The stellar initial mass functions (IMFs) for the Galactic bulge, theMilky Way, other galaxies, clusters of galaxies, and the integratedstars in the universe are composites from countless individual IMFs instar clusters and associations where stars form. These galaxy-scaleIMFs, reviewed in detail here, are not steeper than the cluster IMFsexcept in rare cases. This is true even though low-mass clustersgenerally outnumber high-mass clusters and the average maximum stellarmass in a cluster scales with the cluster mass. The implication is thatthe mass distribution function for clusters and associations is a powerlaw with a slope of -2 or shallower. Steeper slopes, even by a fewtenths, upset the observed equality between large- and small-scale IMFs.Such a cluster function is expected from the hierarchical nature of starformation, which also provides independent evidence for the IMF equalitywhen it is applied on subcluster scales. We explain these results withanalytical expressions and Monte Carlo simulations. Star clusters appearto be the relaxed inner parts of a widespread hierarchy of starformation and cloud structure. They are defined by their own dynamicsrather than by preexisting cloud boundaries.

Hierarchical Star Formation in the Spiral Galaxy NGC 628
The distributions of size and luminosity for star-forming regions in thenearby spiral galaxy NGC 628 are studied over a wide range of scalesusing progressively blurred versions of an image from the Hubble SpaceTelescope Advanced Camera for Surveys. Four optical filters areconsidered for the central region, including Hα. Two filters areused for an outer region. The features in each blurred image are countedand measured using SExtractor. The cumulative size distribution is foundto be a power law in all passbands, with a slope of approximately -1.5over 1.8 orders of magnitude. The luminosity distribution isapproximately a power law as well, with a slope of approximately -1 forlogarithmic intervals of luminosity. The results suggest a scale-freenature for stellar aggregates in a galaxy disk. Fractal models of thindisks reproduce the projected size distribution and suggest a projectedmass distribution slope of approximately -0.5 for these extendedregions. This mass slope converts to the observed luminosity slope if weaccount for luminosity evolution and longer lifetimes in larger regions.

High spatial resolution radio continuum observations of compact H {II} regions in the Magellanic Clouds
We present high spatial resolution observations of the 6 cm continuumemission of compact H II regions in well-known sites of massive starformation located in the Small and Large Magellanic Clouds. Theobservations include N81 in the SMC, and N4A, N83B, N11A, N160A andN159-5 in the LMC. Some of the compact H II regions are isolated, whileothers are embedded in more diffuse ionised regions. A description ofthe radio morphology of the sources, together with comparisons withother observations, is given in detail. The regions cover a wide rangein size (from ˜ 0.1 to 7 pc), rms electron density (from ˜200 to 6500 cm-3), emission measure (from~3×105 to 2×107 pc cm-6),ionised gas mass (from ˜ 0.2 to 750 Mȯ) and rateof Lyman continuum photons (from ~ 3× 1047 to5×1049 s-1). The spectral types determinedfrom the Lyman continuum fluxes are consistent with opticaldeterminations. We have compared these Magellanic Cloud H II regionswith their Galactic counterparts in terms of size, rms electron densityand Lyman continuum flux. This comparison shows that their propertiesrelate to each other in the same way as those in Galactic H II regions.

Australia Telescope Compact Array Survey of Candidate Ultracompact and Buried H II Regions in the Magellanic Clouds
We present a systematic survey for ultracompact (UC) H II regions in theMagellanic Clouds. Understanding the physics of massive star formation(MSF) is a critical astrophysical problem. The study of MSF began in ourGalaxy with surveys of UC H II regions, but before now this has not beendone for other galaxies. We selected candidates on the basis of theirInfrared Astronomical Satellite (IRAS) colors and imaged them at 3 and 6cm with the Australia Telescope Compact Array. Nearly all of theobserved regions contain compact radio sources consistent with thermalemission. Many of the sources are related to optically visible H IIregions, and often the radio emission traces the youngest and densestpart of the H II region. The luminosity function and number distributionof Lyman continuum fluxes of the compact radio sources are consistentwith standard stellar and cluster initial mass functions. This type ofsystematic assessment of IRAS diagnostics is important for interpretingSpitzer Space Telescope data, which will probe similar physical scalesin nearby galaxies as IRAS did in the Magellanic Clouds.

Infrared Surface Brightness Fluctuations of Magellanic Star Clusters
We present surface brightness fluctuations (SBFs) in the near-IR for 191Magellanic star clusters available in the Second Incremental and All SkyData releases of the Two Micron All Sky Survey (2MASS) and compare themwith SBFs of Fornax Cluster galaxies and with predictions from stellarpopulation models as well. We also construct color-magnitude diagrams(CMDs) for these clusters using the 2MASS Point Source Catalog (PSC).Our goals are twofold. The first is to provide an empirical calibrationof near-IR SBFs, given that existing stellar population synthesis modelsare particularly discrepant in the near-IR. Second, whereas mostprevious SBF studies have focused on old, metal-rich populations, thisis the first application to a system with such a wide range of ages(~106 to more than 1010 yr, i.e., 4 orders ofmagnitude), at the same time that the clusters have a very narrow rangeof metallicities (Z~0.0006-0.01, i.e., 1 order of magnitude only). Sincestellar population synthesis models predict a more complex sensitivityof SBFs to metallicity and age in the near-IR than in the optical, thisanalysis offers a unique way of disentangling the effects of age andmetallicity. We find a satisfactory agreement between models and data.We also confirm that near-IR fluctuations and fluctuation colors aremostly driven by age in the Magellanic cluster populations and that inthis respect they constitute a sequence in which the Fornax Clustergalaxies fit adequately. Fluctuations are powered by red supergiantswith high-mass precursors in young populations and by intermediate-massstars populating the asymptotic giant branch in intermediate-agepopulations. For old populations, the trend with age of both fluctuationmagnitudes and colors can be explained straightforwardly by evolution inthe structure and morphology of the red giant branch. Moreover,fluctuation colors display a tendency to redden with age that can befitted by a straight line. For the star clusters only,(H-Ks)=(0.21+/-0.03)log(age)-(1.29+/-0.22) once galaxies areincluded, (H-Ks)=(0.20+/-0.02)log(age)-(1.25+/-0.16).Finally, we use for the first time a Poissonian approach to establishthe error bars of fluctuation measurements, instead of the customaryMonte Carlo simulations.This research has made use of the NASA/ IPAC Infrared Science Archive,which is operated by the Jet Propulsion Laboratory, California Instituteof Technology, under contract with the National Aeronautics and SpaceAdministration.

OB stellar associations in the Large Magellanic Cloud: Survey of young stellar systems
The method developed by Gouliermis et al. (\cite{Gouliermis00}, PaperI), for the detection and classification of stellar systems in the LMC,was used for the identification of stellar associations and openclusters in the central area of the LMC. This method was applied on thestellar catalog produced from a scanned 1.2 m UK Schmidt Telescope Platein U with a field of view almost 6\fdg5 x 6\fdg5, centered on the Bar ofthis galaxy. The survey of the identified systems is presented herefollowed by the results of the investigation on their spatialdistribution and their structural parameters, as were estimatedaccording to our proposed methodology in Paper I. The detected openclusters and stellar associations show to form large filamentarystructures, which are often connected with the loci of HI shells. Thederived mean size of the stellar associations in this survey was foundto agree with the average size found previously by other authors, forstellar associations in different galaxies. This common size of about 80pc might represent a universal scale for the star formation process,whereas the parameter correlations of the detected loose systems supportthe distinction between open clusters and stellar associations.

The relation between radio flux density and ionising ultra-violet flux for HII regions and supernova remnants in the Large Magellanic Cloud
We present a comparison between the Parkes radio surveys (Filipovic etal. 1995) and Vacuum Ultra-Violet (VUV) surveys (Smith et al. 1987) ofthe Large Magellanic Clouds (LMC). We have found 72 sources in common inthe LMC which are known HII regions (52) and supernova remnants (SNRs)(19). Some of these radio sources are associated with two or more UVstellar associations. A comparison of the radio flux densities andionising UV flux for HII regions shows a very good correlation, asexpected from theory. Many of the Magellanic Clouds (MCs) SNRs areembedded in HII regions, so there is also a relation between radio andUV which we attribute to the surrounding HII regions.

A statistical study of binary and multiple clusters in the LMC
Based on the Bica et al. (\cite{bica}) catalogue, we studied the starcluster system of the LMC and provide a new catalogue of all binary andmultiple cluster candidates found. As a selection criterion we used amaximum separation of 1farcm4 corresponding to 20 pc (assuming adistance modulus of 18.5 mag). We performed Monte Carlo simulations andproduced artificial cluster distributions that we compared with the realone in order to check how many of the found cluster pairs and groups canbe expected statistically due to chance superposition on the plane ofthe sky. We found that, depending on the cluster density, between 56%(bar region) and 12% (outer LMC) of the detected pairs can be explainedstatistically. We studied in detail the properties of the multiplecluster candidates. The binary cluster candidates seem to show atendency to form with components of similar size. When possible, westudied the age structure of the cluster groups and found that themultiple clusters are predominantly young with only a few cluster groupsolder than 300 Myr. The spatial distribution of the cluster pairs andgroups coincides with the distribution of clusters in general; however,old groups or groups with large internal age differences are mainlylocated in the densely populated bar region. Thus, they can easily beexplained as chance superpositions. Our findings show that a formationscenario through tidal capture is not only unlikely due to the lowprobability of close encounters of star clusters, and thus the evenlower probability of tidal capture, but the few groups with largeinternal age differences can easily be explained with projectioneffects. We favour a formation scenario as suggested by Fujimoto &Kumai (\cite{fk}) in which the components of a binary cluster formedtogether and thus should be coeval or have small age differencescompatible with cluster formation time scales. Table 6 is only availablein electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/391/547

A CO Survey of the LMC with NANTEN: III. Formation of Stellar Clusters and Evolution of Molecular Clouds
In order to elucidate star formation in the LMC, we made a completestudy of CO clouds with NANTEN. In the present paper, we compare 55giant molecular clouds (GMCs), whose physical quantities were welldetermined, with young objects, such as young stellar clusters and HIIregions. We find that the GMCs are actively forming stars and clusters;23 and 40 are found to be associated with the clusters and the HIIregions, respectively. The clusters associated with the GMCs aresignificantly young; ~ 85% of them are younger than ~ 10 Myr. Inaddition, compact groups of the young clusters are often found at thepeak position of the GMCs, e.g., N 159 and N 44, while much loosergroups are away from the GMCs. This suggests that the clusters areformed in groups and disperse as they become old. The distributions ofthe CO, [CII], and UV indicate that the GMCs are likely to be rapidlydissipated within several Myr due to UV photons from the clusters. Wealso estimate the evolutionary time scale of the GMCs; they form starsin a few Myr after their birth, and form clusters during the next fewMyr, and are dissipated in the subsequent few Myr.

HST study of the LMC compact star-forming region N83B
High resolution imaging with the Hubble Space Telescope has uncoveredthe thus far hidden stellar content and the nebular features of the highexcitation compact H ii region N83B in the Large Magellanic Cloud (LMC).We discover that the H ii region is powered by the most recent massivestarburst in the OB association LH 5 and the burst has created about 20blue stars spread over ~ 30'' on the sky (7.5 pc). Globally N83Bdisplays a turbulent environment typical of newborn massive starformation sites. It contains an impressive ridge, likely created by ashock and a cavity with an estimated age of only ~ 30 000 yr, sculptedin the ionized gas by the powerful winds of massive stars. Theobservations bring to light two compact H ii blobs, N83B-1 and N83B-2,and a small arc-nebula, N83B-3, lying inside the larger H ii region.N83B-1, only ~ 2''.8 (0.7 pc) across, is the brightest and most excitedpart of N83B. It harbors the presumably hottest star of the burst and isalso strongly affected by dust with an extinction of AV=2.5mag. The second blob, N83B-2, is even more compact, with a size of only~ 1'' (0.3 pc). All three features are formed in the border zone betweenthe molecular cloud and the ionized gas possibly in a sequential processtriggered by the ionization front of an older H ii region. Our HSTimaging presents an interesting and rare opportunity to observe detailsin the morphology of star formation on very small spatial scales in theLMC which are in agreement with the concept of the fractal structure ofmolecular star-forming clouds. A scenario which supports hierarchicalmassive star formation in the LMC OB association LH 5 is presented.Based on observations with the NASA/ESA Hubble Space Telescope obtainedat the Space Telescope Science Institute, which is operated by theAssociation of Universities for Research in Astronomy, Inc., under NASAcontract NAS 5-26555.

Circumstellar masers in the Magellanic Clouds
Results are presented of a search for 22 GHz H_2O616->523, 43 GHz SiOv=1(J=1->0),86 GHz SiOv=1(J=2->1) and 129 GHzSiOv=1(J=3->2) maser emission from bright IRAS pointsources in the Small and Large Magellanic Clouds - mostly circumstellarenvelopes around obscured red supergiants and Asymptotic Giant Branchstars (OH/IR stars). The aim of this effort was to test whether thekinematics of the mass loss from these stars depends on metallicity.H_2O maser emission was detected in the red supergiants IRAS 04553-6825and IRAS 05280-6910, and tentatively in the luminous IR object IRAS05216-6753 and the AGB star IRAS 05329-6708, all in the LMC.SiOv=1(J=2->1) maser emission was detected in IRAS04553-6825. The double-peaked H_2O maser line profiles of IRAS04553-6825 and IRAS 05280-6910, in combination with the OH (and SiO)maser line profiles, yield the acceleration of the outflows from thesestars. The outflow velocity increases between the H_2O masing zone nearthe dust-formation region and the more distant OH masing zone from v ~18 to 26 km s-1 for IRAS 04553-6825 and from v ~ 6 to 17 kms-1 for IRAS 05280-6910. The total sample of LMC targets isanalysed in comparison with circumstellar masers in the Galactic Centre.The photon fluxes of circumstellar masers in the LMC are found to bevery similar to those in the Galactic Centre. The expansion velocitiesin the LMC appear to be ~ 20% lower than for similarly bright OH masersin the Galactic Centre, but the data are still consistent with nodifference in expansion velocity. OH/IR stars in the LMC appear to haveslower accelerating envelopes than OH/IR stars in the Galactic Centre.The masers in the LMC have blue-asymmetric emission profiles. This maybe due to the amplification of stellar and/or free-free radiation,rather than the amplification of dust emission, and may be morepronounced in low metallicity envelopes. The SiO maser strengthincreases with the photometric amplitude at 2.2 mu m but is independentof the photometric amplitude at 10 mu m. This suggests a strongconnection between shocks in the dust-free SiO masing zone and the dustformation process. The LMC masers obey the same trend as the GalacticCentre masers. Appendices describe H_2O maser emission from themoderately mass-losing AGB star R Dor in the Milky Way, optical echellespectroscopy of IRAS 04553-6825, and the properties of circumstellarmasers in the Galactic Centre.

Ultraviolet and Optical Observations of OB Associations and Field Stars in the Southwest Region of the Large Magellanic Cloud
Using ultraviolet photometry from the Ultraviolet Imaging Telescope(UIT) combined with photometry and spectroscopy from three ground-basedoptical data sets we have analyzed the stellar content of OBassociations and field areas in and around the regions N79, N81, N83,and N94 in the Large Magellanic Cloud. In particular, we compare datafor the OB association Lucke-Hodge 2 (LH 2) to determine how stronglythe initial mass function (IMF) may depend on different photometricreductions and calibrations. Although the data sets exhibit medianphotometric differences of up to 30%, the resulting uncorrected IMFs arereasonably similar, typically Γ~-1.6 in the 5-60 Msolarmass range. However, when we correct for the background contribution offield stars, the calculated IMF flattens to Γ=-1.3+/-0.2 (similarto the Salpeter IMF slope). This change underlines the importance ofcorrecting for field star contamination in determinations of the IMF ofstar formation regions. It is possible that even in the case of anuniversal IMF, the variability of the density of background stars couldbe the dominant factor creating the differences between calculated IMFsfor OB associations. We have also combined the UIT data with the mostextensive of these ground-based optical data sets-the Magellanic CloudPhotometric Survey-to study the distribution of the candidate O-typestars in the field. We find a significant fraction, roughly half, of thecandidate O-type stars are found in field regions, far from any obviousOB associations (in accord with the 1982 suggestions of Garmany, Conti,& Chiosi for O-type stars in the solar neighborhood). These starsare greater than 2' (30 pc) from the boundaries of existing OBassociations in the region, which is a distance greater than most O-typestars with typical dispersion velocities will travel in their lifetimes.The origin of these massive field stars (either as runaways, members oflow-density star-forming regions, or examples of isolated massive starformation) will have to be determined by further observations andanalysis.

The Progenitor Masses of Wolf-Rayet Stars and Luminous Blue Variables Determined from Cluster Turnoffs. I. Results from 19 OB Associations in the Magellanic Clouds
We combine new CCD UBV photometry and spectroscopy with those from theliterature to investigate 19 Magellanic Cloud OB associations thatcontain Wolf-Rayet (W-R) and other types of evolved, massive stars. Ourspectroscopy reveals a wealth of newly identified interesting objects,including early O-type supergiants, a high-mass, double-lined binary inthe SMC, and, in the LMC, a newly confirmed luminous blue variable (LBV;R85), a newly discovered W-R star (Sk -69°194), and a newly foundluminous B[e] star (LH 85-10). We use these data to provide precisereddening determinations and construct physical H-R diagrams for theassociations. We find that about half of the associations may be highlycoeval, with the massive stars having formed over a short period(Δτ<1 Myr). The (initial) masses of the highest massunevolved stars in the coeval clusters may be used to estimate themasses of the progenitors of W-R and other evolved stars found in theseclusters. Similarly, the bolometric luminosities of the highest massunevolved stars can be used to determine the bolometric corrections(BCs) for the evolved stars, providing a valuable observational basisfor evaluating recent models of these complicated atmospheres. What wefind is the following: (1) Although their numbers is small, it appearsthat the W-R stars in the SMC come from only the highest mass (greaterthan 70 Msolar) stars. This is in accord with ourexpectations that at low metallicities only the most massive andluminous stars will have sufficient mass loss to become W-R stars. (2)In the LMC, the early-type WN (WNE) stars occur in clusters whoseturnoff masses range from 30 to 100 Msolar or more. Thissuggests that possibly all stars with mass greater than 30Msolar pass through a WNE stage at LMC metallicities. (3) Theone WC star in the SMC is found in a cluster with a turnoff mass of 70Msolar, the same as that for the SMC WN stars. In the LMC,the WC stars are found in clusters with turnoff masses of 45Msolar or higher, similar to what is found for the LMC WNstars. Thus we conclude that WC stars come from essentially the samemass range as do WN stars and indeed are often found in the sameclusters. This has important implications for interpreting therelationship between metallicity and the WC/WN ratio found in LocalGroup galaxies, which we discuss. (4) The LBVs in our sample come fromvery high mass stars (greater than 85 Msolar), similar towhat is known for the Galactic LBV η Car, suggesting that only themost massive stars go through an LBV phase. Recently, Ofpe/WN9 starshave been implicated as LBVs after one such star underwent an LBV-likeoutburst. However, our study includes two Ofpe/WN9 stars, BE 381 and Br18, which we find in clusters with much lower turnoff masses (25-35Msolar). We suggest that Ofpe/WN9 stars are unrelated to``true'' LBVs: not all ``LBV-like outbursts'' may have the same cause.Similarly, the B[e] stars have sometimes been described as LBV-like.Yet, the two stars in our sample appear to come from a large mass range(30-60 Msolar). This is consistent with other studies,suggesting that B[e] stars cover a large range in bolometricluminosities. (5) The bolometric corrections of early WN and WC starsare found to be extreme, with an average BC(WNE) of -6.0 mag and anaverage BC(WC4) of -5.5 mag. These values are considerably more negativethan those of even the hottest O-type stars. However, similar valueshave been found for WNE stars by applying Hillier's ``standard model''for W-R atmospheres. We find more modest BCs for the Ofpe/WN9 stars(BC=-2 to -4 mag), also consistent with recent analysis done with thestandard model. Extension of these studies to the Galactic clusters willprovide insight into how massive stars evolve at differentmetallicities.

Ultraviolet Imaging Polarimetry of the Large Magellanic Cloud. II. Models
Motivated by new sounding-rocket wide-field polarimetric images of theLarge Magellanic Cloud (reported simultaneously by Cole et al.), we haveused a three-dimensional Monte Carlo radiation transfer code toinvestigate the escape of near-ultraviolet photons from young stellarassociations embedded within a disk of dusty material (i.e., a galaxy).As photons propagate through the disk, they may be scattered or absorbedby dust. Scattered photons are polarized and tracked until they escapethe dust layer, allowing them to be observed; absorbed photons heat thedust, which radiates isotropically in the far-infrared where the galaxyis optically thin. The code produces four output images: near-UV andfar-IR flux, and near-UV images in the linear Stokes parameters Q and U.From these images we construct simulated UV polarization maps of theLMC. We use these maps to place constraints on the star+dust geometry ofthe LMC and the optical properties of its dust grains. By tuning themodel input parameters to produce maps that match the observedpolarization maps, we derive information about the inclination of theLMC disk to the plane of the sky and about the scattering phase functiong. We compute a grid of models with i=28 deg, 36 deg, and 45 deg, andg=0.64, 0.70, 0.77, 0.83, and 0.90. The model that best reproduces theobserved polarization maps has i=36 deg+2-5 andg~0.7. Because of the low signal-to-noise in the data, we cannot placefirm constraints on the value of g. The highly inclined models do notmatch the observed centrosymmetric polarization patterns around brightOB associations or the distribution of polarization values. Our modelsapproximately reproduce the observed ultraviolet photopolarimetry of thewestern side of the LMC; however, the output images depend on many inputparameters and are nonunique. We discuss some of the limitations of themodels and outline future steps to be taken; our models make somepredictions regarding the polarization properties of diffuse lightacross the rest of the LMC.

Ultraviolet Imaging Polarimetry of the Large Magellanic Cloud. I. Observations
We have used the rocketborne Wide-Field Imaging Survey Polarimeter(WISP) to image a 1.5dx4.8d area of the western side of the LargeMagellanic Cloud (LMC) at a wavelength of λ=2150 Å and aresolution of 1'x1.5′. These are the first wide-field ultravioletpolarimetric images in astronomy. We find the UV background light of theLMC to be linearly polarized at levels ranging from our sensitivitylimit of 4% to as high as ~40%. In general, the polarization in a pixelincreases as the flux decreases; the weighted mean value of polarizationacross the WISP field is 12.6%+/-2.3%. The LMC's diffuse UV background,in uncrowded areas, rises from a minimum of (5.6+/-3.1)x10-8ergs s-1 cm-2 Å-1 sr-1(23.6+/-0.5 mag arcsec-2) to (9.3+/-1.1)x10-8 ergss-1 cm-2 Å-1 sr-1(23.1+/-0.2 mag arcsec-2) in regions near the brightassociations. We use our polarization maps to investigate the geometryof the interstellar medium in the LMC and to search for evidence of asignificant contribution of scattered light from OB associations to thediffuse galactic light of the LMC. Through a statistical analysis of ourpolarization map, we identify nine regions of intense UV emission whichmay be giving rise to scattering halos in our image. We find thatstarlight from the N11 complex and the LH 15 association are thestrongest contributors to the scattered light component of the LMC'sdiffuse galactic light. This region of the northwestern LMC can bethought of as a kiloparsec-scale reflection nebula in which OB starsilluminate distant dust grains that scatter the light into our sightline. In contrast, the polarization map does not support the scatteringof light from the large B2 complex in the southern WISP field; thiseffect may be astrophysical, or it may be the result of bias in ouranalysis.

UBV photometry of Galactic foreground and LMC member stars - III. LMC member stars - a new data base
New UBV photometry for 878 luminous member stars of the Large MagellanicCloud (LMC) and 13 stars of uncertain membership is presented. The datawill be available at Centre de Données astronomiques deStrasbourg. Including former observations now UBV data are available foraltogether 2470 luminous LMC stars and 2106 foreground stars plus 65stars of uncertain membership. The observations have been used alreadyfor several investigations dealing e.g. with interstellar reddeninglines and intrinsic colours, the dust distribution and the calibrationof charge-coupled device exposures.

A Revised and Extended Catalog of Magellanic System Clusters, Associations, and Emission Nebulae. II. The Large Magellanic Cloud
A survey of extended objects in the Large Magellanic Cloud was carriedout on the ESO/SERC R and J Sky Survey Atlases, checking entries inprevious catalogs and searching for new objects. The census provided6659 objects including star clusters, emission-free associations, andobjects related to emission nebulae. Each of these classes containsthree subclasses with intermediate properties, which are used to infertotal populations. The survey includes cross identifications amongcatalogs, and we present 3246 new objects. We provide accuratepositions, classification, and homogeneous measurements of sizes andposition angles, as well as information on cluster pairs andhierarchical relation for superimposed objects. This unification andenlargement of catalogs is important for future searches of fainter andsmaller new objects. We discuss the angular and size distributions ofthe objects of the different classes. The angular distributions show twooff-centered systems with different inclinations, suggesting that theLMC disk is warped. The present catalog together with its previouscounterpart for the SMC and the inter-Cloud region provide a totalpopulation of 7847 extended objects in the Magellanic System. Theangular distribution of the ensemble reveals important clues on theinteraction between the LMC and SMC.

Ultraviolet Imaging Telescope Observations of the Magellanic Clouds
We present wide-field far-ultraviolet (FUV; 1300-1800 Å) images ofthe Large and Small Magellanic Clouds (LMC, SMC). These data wereobtained by the Ultraviolet Imaging Telescope (UIT) during the Astro-1(1990 December 1-10) and Astro-2 (1995 March 2-18) missions; the imagesprovide an extensive FUV mosaic of the SMC and contain numerous regionsin the LMC, covering a wide range of stellar densities and current starformation activity. A total of 47 LMC/Lucke-Hodge and 37 SMC/Hodge OBassociations are completely or partially included in the observedfields. FUV data can identify the hottest OB stars more easily than canoptical photometry, and these stars dominate the ionizing flux, which iscorrelated to the observed Hα flux of the associated H ii regions.Of the H ii regions in the catalog of Davies, Elliott, & Meaburn(DEM), the UIT fields completely or partially include 102 DEM regions inthe LMC and 74 DEM regions in the SMC. We present a catalog of FUVmagnitudes derived from point-spread function photometry for 37,333stars in the LMC (the UIT FUV magnitudes for 11,306 stars in the SMCwere presented recently by Cornett et al.), with a completeness limit ofm_UV ~ 15 mag and a detection limit of m_UV ~ 17.5. The averageuncertainty in the photometry is ~0.1 mag. The full catalog withastrometric positions, photometry, and other information is alsoavailable from publicly accessible astronomical data archives. We dividethe catalog into field stars and stars that are in DEM regions. Weanalyze each of these two sets of stars independently, comparing thecomposite UV luminosity function of our data with UV magnitudes derivedfrom stellar evolution and atmosphere models in order to derive theunderlying stellar formation parameters. We find a most probable initialmass function (IMF) slope for the LMC field stars of Gamma = -1.80 +/-0.09. The statistical significance of this single slope for the LMCfield stars is extremely high, though we also find some evidence for afield star IMF slope of Gamma ~ -1.4, roughly equal to the Salpeterslope. However, in the case of the stars in the DEM regions (the starsin all the regions were analyzed together as a single group), we findthree IMF slopes of roughly equal likelihood: Gamma = -1.0, -1.6, and-2.0. No typical age for the field stars is found in our data for timeperiods up to a continuous star formation age of 500 Myr, which is themaximum age consistent with the completeness limit magnitude of thecatalog's luminosity function. The best age for the collection ofcluster stars was found to be t_0 = 3.4 +/- 1.9 Myr; this is consistentwith the age expected for a collection of OB stars from many differentclusters.

H_2 and its relation to CO in the LMC and other magellanic irregular galaxies
H_2 column densities towards CO clouds in the LMC and SMC are estimatedfrom their far-infrared surface brightness and HI column density. Thenewly derived H_2 column densities imply N(H_{2)}/I(CO) conversionfactors (in units of 10(21) mol cm(-2) (K km s(-1) )(-1) ) X_LMC =1.3+/-0.2 and X_SMC = 12+/-2. LMC and SMC contain total (warm) H_2masses of 1.0+/-0.3 x 10(8) Msun and 0.75+/-0.25 x 10(8)Msun respectively. Local H_2/HI mass ratios similar to thosein LMC and SMC are found in the magellanic irregulars NGC 55, 1569,4214, 4449 and 6822 and in the extragalactic HII region complexes NGC604, 595 and 5461 in M 33 and M 101 respectively. In these HII regionsand in NGC 4449, we find X = 1-2; in NGC 55, 4214 and 6822 X = 3-6 againin units of 10(21) mol cm(-2) (K km s(-1) )(-1) . The post-starburstgalaxy NGC 1569 has a very high value similar to that of the SMC. TheCO-H_2 conversion factor X is found to depend on both the ambientradiation field intensity per nucleon {sigma _FIR/{N_H and metallicity[O]/[H]: log X ~ 0.9+/-0.1 logfrac {sigma _FIR{N_H - 3.5+/-0.2log([O])/([H]). Neglecting dependency on radiation field, a reasonableapproximation is also provided by log X ~ -2.7+/-0.3 log([O])/([H]).Milky Way values are consistent with these relations. This result isinterpreted as the consequence of selective photodissociation of COsubjected to high radiation field energy densities and poor(self)shielding in low-metallicity environments, and especially thepreferential destruction of diffuse CO in `interclump' gas. Althoughlocally H_2 may be the dominant ISM-component, the average global H_2/HImass ratio is 0.2+/-0.04 and the average H_2 gas mass fraction is0.12+/-0.02. Magellanic irregulars have warm molecular gas fractionsvery similar to those of our Galaxy, whereas other global properties(mass, luminosity, metallicity, CO luminosity) are very different.

Obscured AGB stars in the Magellanic Clouds. I. IRAS candidates
We have selected 198 IRAS sources in the Large Magellanic Cloud, and 11in the Small Magellanic Cloud, which are the best candidates to bemass--loosing AGB stars (or possibly post--AGB stars). We used thecatalogues of \cite[Schwering \& Israel (1990)]{ref42} and\cite[Reid et al. (1990)]{ref36}. They are based on the IRAS pointedobservations and have lower detection limits than the Point SourceCatalogue. We also made cross-identifications between IRAS sources andoptical catalogues. Our resulting catalogue is divided in 7 tables.Table \ref{tab1} lists optically known red supergiants and AGB stars forwhich we found an IRAS counterpart (7 and 52 stars in the SMC and LMC,respectively). Table \ref{tab2} lists ``obscured'' (or ``cocoon'') AGBstars or late-type supergiants which have been identified as such inprevious works through their IRAS counterpart and JHKLM photometry (2SMC and 34 LMC sources; no optical counterparts). Table \ref{tab3} listsknown planetary nebulae with an IRAS counterpart (4 SMC and 19 LMC PNe).Table \ref{tab4} lists unidentified IRAS sources that we believe to begood AGB or post--AGB or PNe candidates (11 SMC and 198 LMC sources).Table~\ref{tab5} lists unidentified IRAS sources which could be any typeof object (23 SMC and 121 LMC sources). Table \ref{tab6} lists IRASsources associated with foreground stars (29 SMC and 135 LMC stars).Table \ref{tab7} lists ruled out IRAS sources associated with HIIregions, hot stars, etc... We show that the sample of IRAS AGB stars inthe Magellanic Clouds is very incomplete. Only AGB stars more luminousthan typically 10^4 L_\odot and with a mass-loss rate larger thantypically 5 10^{-6} M_\odot/yr could be detected by the IRAS satellite.As a consequence, one expects to find very few carbon stars in the IRASsample. We also expect that most AGB stars with intermediate mass--lossrates have not been discovered yet, neither in optical surveys, nor inthe IRAS survey. Tables 1 to 8 are also available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Studies of ultracompact HII regions - I. Methanol maser survey of IRAS-selected sources
A survey of ultracompact (UC) Hii regions has been carried out bysearching for 6.669-GHz methanol maser emission from a sample of 535IRAS-selected candidates. A total of 201 candidates exhibit methanolemission. These sources have been used, in conjunction with previouslyidentified UC Hii regions, to provide a base for further studies of suchregions. Estimates of distances have indicated that the identified UCHii regions tend to have some Galactic structure but it is not clearwhether they lie in or between the spiral arms of the Galaxy. Theregions are tightly constrained to the plane of the Galaxy. Comparisonof identified regions and IRAS sources selected by Wood & Churchwellindicates that there there is some degree of contamination, which couldbe due to an older phase in the life on an UC Hii region where methanolmaser emission is not apparent. Luminosities and spectral types havebeen derived for many of the regions. The maximum number of maser spotsobserved seems to increase with increasing peak maser luminosity, whichindicates that the maser emission is more dependent on the abundance ofmethanol than the availability of far-infrared radiation.

Integrated UBV Photometry of 624 Star Clusters and Associations in the Large Magellanic Cloud
We present a catalog of integrated UBV photometry of 504 star clustersand 120 stellar associations in the LMC, part of them still embedded inemitting gas. We study age groups in terms of equivalent SWB typesderived from the (U-B) X (B-V) diagram. The size of the spatialdistributions increases steadily with age (SWB types), whereas adifference of axial ratio exists between the groups younger than 30 Myrand those older, which implies a nearly face-on orientation for theformer and a tilt of ~45^deg^ for the latter groups. Asymmetries arepresent in the spatial distributions, which, together with thenoncoincidence of the centroids for different age groups, suggest thatthe LMC disk was severely perturbed in the past.

A radio continuum study of the Magellanic Clouds. IV. Catalogues of radio sources in the Large Magellanic Cloud at 1.40, 2.45, 4.75, 4.85 and 8.55 GHz.
From observations with the Parkes radio telescope, we present cataloguesof radio sources in the Large Magellanic Cloud at four frequencies:1.40, 2.45, 4.75 and 8.55GHz, and an additional catalogue from a sourceanalysis of the Parkes-MIT-NRAO survey at 4.85GHz. A total of 469sources have been detected at least one of these frequencies, 132 ofwhich are reported here for the first time as radio sources.

A Search for Methanol Masers in the Magellanic Clouds
We report the discovery of a second methanol maser in the LargeMagellanic Cloud and we present the results of synthesis observations ofthis and the methanol maser detected previously. The second discoverywas made using the Australia Telescope National Facility's 64-m Parkesradio telescope during an extensive maser search for 6.6-GHz maseremission from the 5_1_-6_0_ A^+^ transition in both Magellanic Clouds.Spectra were obtained towards 35 HII regions in the Large MagellanicCloud and 13 regions in the Small Magellanic Cloud, and also on a3-arcmin grid over an area 0.3^deg^ square, south of the 30 Doradusnebula. Parkes observations at 12.2 GHz towards the two maser sitesyielded no detectable emission from the 2_0_-3_-1_, E methanoltransition. The results suggest that methanol masers are less abundantin the Magellanic Clouds than in our Galaxy. Observations of the twomasers with the Australia Telescope Compact Array showed one to belocated near the continuum emission peak of the H II region MC18 (N11),while the other appeared to be centred near OH emission on thesouth-eastern boundary of MC23 (N105a).

An atlas of the interstellar environment of Wolf-Rayet stars in the Magellanic clouds
We have made a complete study of the interstellar environment around theWolf-Rayet stars in the Magellanic Clouds. We present, in the form of anatlas, the results of a complete imaging survey in Hα and of anextensive survey in the (O III) alpha 5007 emission line. As a result ofthis survey, we have more than doubled the total number of ring nebulaeknown. These include cases of both rings of stellar ejecta and ringnebulae resulting from the sweeping up of the surrounding interstellarmedium. We find that 34% of WN3-WN4 stars, 36% of late WN types, and 26%of WC4-WC5 stars are associated with a ring nebula of some kind. Thesefigures are very similar to the percentage of Wolf-Rayet stars havingring nebulae in the solar neighborhood. The size distribution of ringnebulae is also similar. From the fact that the majority of Wolf-Rayetstars do not show ring nebulae, it is clear that mass loss in earlierphases of evolution, and the collective effects of the energy input fromthe clusters of OB stars with which the Wolf-Rayet stars are frequentlyassociated, has profoundly modified the preexisting circumstellarenvironment. However, on the basis of statistics, we cannot exclude thepossibility that all Wolf-Rayet stars have possessed a ring nebula atsome stage in their evolution.

Results of the ESO / SEST Key Programme on Co/ in the Magellanic Clouds - Part One - a Survey of Co/ in the Large Magellanic Cloud and the Small Magellanic Cloud
As the first part of the ESO-Swedish SEST Key Programme on CO in theMagellanic Clouds, we have observed ^12^CO J = 1-0 towards 92 positionsin the LMC and 42 positions in the SMC. In the SMC we searched foremission from H II regions, dark clouds and IRAS infrared sources. Thegenerally negative detection rate of non-IRAS sources in the SMC led toan LMC source selection based on the IRAS results. In both galaxies, COwas detected towards the majority of sources observed. We also observed^13^C0 J = 1-0 towards the brighter ^12^CO sources in the LMC (37) andSMC (9). Compared to the strength of CO lines observed in the Milky WayGalaxy with identical linear resolutions, velocity-integrated COemission is weaker by at least a factor of three in the LMC sources andan order of magnitude in the SMC sources. The mean velocity-integratedisotopic intensity ratio I_12_/I_13_ is 12.5 in the LMC and about 15 inthe SMC. Individual ratios range from 8.5 to 20. These isotopicintensity ratios are two to three times higher than those found inGalactic molecular clouds.

Infrared photometry of compact objects in the Magellanic Clouds
The results of JHK (L-prime M) photometry of 34, mostly compact, objectsin the Magellanic Clouds are presented. At JHK, slightly less than halfare dominated by stellar emission or are in fact stars. The planetarynebula N 145 (LMC) was also observed. Comparison with IRAS observationsshows that almost all optically compact nebulae are also compact atlonger infrared wavelengths. IRAS 12-micrometer 'excess' emission isinversely correlated with hot and compact IR emission. Some compactobjects, notably the nebula N 88 (SMC) show a rather extreme blue J - Hcolor which needs further investigation. It is suggested that N 59-IRSand especially N 150 (LMC) are good candidates to search for traces ofrecent star formation. Results on the complexes N 159 (LMC), N 83/N 84,and N 88 (SMC) are briefly discussed.

A new high excitation compact H II blob in the Large Magellanic Cloud
A new high excitation H II blob, N 83 B-1, in the Large Magellanic Cloudwas detected. So far, only four objects of this type have beenencountered in the LMC. These objects represent very early stages ofmassive stars emerging from their embryonic molecular clouds. Therefore,their investigation is important for testing the ideas about massivestar formation. A detailed analysis of several physical characteristicsof N 83 B-1 is presented.

Dust in emission nebulae of the LMC derived from photometric reddening of stars
VBLUW photometric observations of stars in emission nebulae of the LMCare reported. The luminosities and extinctions of the stars are derived.Agreement is found between the average photometric extinctions of thenebulae and the extinctions derived from the Balmer line decrementmeasured by Caplan and Deharveng (1985 and 1986). The photometricextinctions are shown in the CO map of the LMC (Cohen et al., 1988).

Sottometti un nuovo articolo


Link relazionati

  • - Nessun link trovato -
Sottometti un nuovo link


Membro dei seguenti gruppi:


Osservazione e dati astrometrici

Costellazione:Dorado
Ascensione retta:04h54m23.00s
Declinazione:-69°11'06.0"
Magnitudine apparente:99.9

Cataloghi e designazioni:
Nomi esatti
NGC 2000.0NGC 1748

→ Richiesta di ulteriori cataloghi da VizieR