Home     Sopravvivere Nell'Universo    
Services
    Perché adottare     Donatori     Astro Foto     La collezione     Forum     Blog New!     FAQ     Login  

NGC 6304


Contenuti

Immagini

Carica la tua immagine

DSS Images   Other Images


Articoli relazionati

Where the Blue Stragglers Roam: Searching for a Link between Formation and Environment
The formation of blue stragglers is still not completely understood,particularly the relationship between formation environment andmechanism. We use a large, homogeneous sample of blue stragglers in thecores of 57 globular clusters to investigate the relationships betweenblue straggler populations and their environments. We use a consistentdefinition of ``blue straggler'' based on position in thecolor-magnitude diagram and normalize the population relative to thenumber of red giant branch stars in the core. We find that thepreviously determined anticorrelation between blue straggler frequencyand total cluster mass is present in the purely core population. We findsome weak anticorrelations with central velocity dispersion and withhalf-mass relaxation time. The blue straggler frequency does not showany trend with any other cluster parameter. Even though collisions maybe expected to be a dominant blue straggler formation process inglobular cluster cores, we find no correlation between the frequency ofblue stragglers and the collision rate in the core. We also investigatedthe blue straggler luminosity function shape and found no relationshipbetween any cluster parameter and the distribution of blue stragglers inthe color-magnitude diagram. Our results are inconsistent with somerecent models of blue straggler formation that include collisionalformation mechanisms and may suggest that almost all observed bluestragglers are formed in binary systems.

Near-Infrared Properties of 24 Globular Clusters in the Galactic Bulge
We present near-IR color-magnitude diagrams and physical parameters fora sample of 24 Galactic globular clusters toward the bulge. In thispaper we discuss the properties of 12 new clusters (out of the 24) inaddition to those previously studied and published by our group. Thecompilation includes measurements of the cluster reddening, distance,photometric metallicity, horizontal branch red clump, and red giantbranch morphological (e.g., mean ridgelines) and evolutionary (e.g.,bump and tip) features. The compilation is available in electronic formon the World Wide Web, and it will be updated regularly.Based on data taken at the ESO New Technology Telescope, within theobserving programs 73.D-0313, 75.D-0372, and 77.D-0757.

Integrated-Light Two Micron All Sky Survey Infrared Photometry of Galactic Globular Clusters
We have mosaicked Two Micron All Sky Survey (2MASS) images to derivesurface brightness profiles in J, H, and Ks for 104 Galacticglobular clusters. We fit these with King profiles and show that thecore radii are identical to within the errors for each of these IRcolors and are identical to the core radii at V in essentially allcases. We derive integrated-light colors V-J, V-H, V-Ks, J-H,and J-Ks for these globular clusters. Each color shows areasonably tight relation between the dereddened colors and metallicity.Fits to these are given for each color. The IR - IR colors have verysmall errors, due largely to the all-sky photometric calibration of the2MASS survey, while the V-IR colors have substantially largeruncertainties. We find fairly good agreement with measurements ofintegrated-light colors for a smaller sample of Galactic globularclusters by M. Aaronson, M. Malkan, and D. Kleinmann from 1977. Ourresults provide a calibration for the integrated light of distantsingle-burst old stellar populations from very low to solarmetallicities. A comparison of our dereddened measured colors withpredictions from several models of the integrated light of single-burstold populations shows good agreement in the low-metallicity domain forV-Ks colors but also shows an offset at a fixed [Fe/H] of~0.1 mag in J-Ks, which we ascribe to photometric systemtransformation issues. Some of the models fail to reproduce the behaviorof the integrated-light colors of the Galactic globular clusters nearsolar metallicity.

The Orbits of 48 Globular Clusters in a Milky Way-like Barred Galaxy
The effect of a barred potential (such as the one of the Milky Way) onthe Galactic orbits of 48 globular clusters for which absolute propermotions are known is studied. The orbital characteristics are comparedwith those obtained for the case of an axisymmetric Galactic potential.Tidal radii are computed and discussed for both the better knownaxisymmetric case and that including a bar. The destruction rates due tobulge and disk shocking are calculated and compared in both Galacticpotentials.

Global fitting of globular cluster age indicators
Context: .Stellar models and the methods for the age determinations ofglobular clusters are still in need of improvement. Aims: .Weattempt to obtain a more objective method of age determination based oncluster diagrams, avoiding the introduction of biases due to thepreference of one single age indicator. Methods: .We compute newstellar evolutionary tracks and derive the dependence of age indicatingpoints along the tracks and isochrone - such as the turn-off or bumplocation - as a function of age and metallicity. The same criticalpoints are identified in the colour-magnitude diagrams of globularclusters from a homogeneous database. Several age indicators are thenfitted simultaneously, and the overall best-fitting isochrone isselected to determine the cluster age. We also determine thegoodness-of-fit for different sets of indicators to estimate theconfidence level of our results. Results: .We find that ourisochrones provide no acceptable fit for all age indicators. Inparticular, the location of the bump and the brightness of the tip ofthe red giant branch are problematic. On the other hand, the turn-offregion is very well reproduced, and restricting the method to indicatorsdepending on it results in trustworthy ages. Using an alternative set ofisochrones improves the situation, but neither leads to an acceptableglobal fit. Conclusions: .We conclude that evolutionary tracks oflow-mass metal-poor stars are far from reproducing all aspects ofglobular cluster colour-magnitude diagrams and that the determination ofcluster ages still depends on the favourite method or indicator chosen.

Multivariate analysis of globular cluster horizontal branch morphology: searching for the second parameter
Aims.The interpretation of globular cluster horizontal branch (HB)morphology is a classical problem that can significantly blur ourunderstanding of stellar populations. Methods: .We present a newmultivariate analysis connecting the effective temperature extent of theHB with other cluster parameters. The work is based on Hubble SpaceTelescope photometry of 54 Galactic globular clusters. Results: .The present study reveals the important role of the total mass of theglobular cluster on its HB morphology. More massive clusters tend tohave HBs more extended to higher temperatures. For a set of three inputvariables including the temperature extension of the HB, [Fe/H] and M_V,the first two eigenvectors account for 90% of the total samplevariance. Conclusions: . Possible effects of clusterself-pollution on HB morphology, stronger in more massive clusters,could explain the results derived here.

An Empirical Calibration of the Mixing-Length Parameter α
We present an empirical calibration of the mixing-length free parameterα based on a homogeneous infrared database of 28 Galactic globularclusters spanning a wide metallicity range (-2.15<[Fe/H]<-0.2).Empirical estimates of the red giant effective temperatures have beenobtained from infrared colors. Suitable relations linking thesetemperatures to the cluster metallicity have been obtained and comparedto theoretical predictions. An appropriate set of models for the Sun andPopulation II giants has been computed by using both the standard solarmetallicity (Z/X)solar=0.0275 and the most recently proposedvalue (Z/X)solar=0.0177. We find that when the standard solarmetallicity is adopted, a unique value of α=2.17 can be used toreproduce both the solar radius and the Population II red gianttemperature. Conversely, when the new solar metallicity is adopted, twodifferent values of α are required: α=1.86 to fit the solarradius and α~2.0 to fit the red giant temperatures. However, itmust be noted that regardless the adopted solar reference, theα-parameter does not show any significant dependence onmetallicity.Based on observations collected at the European Southern Observatory(ESO), La Silla, Chile. Also based on observations made with the ItalianTelescopio Nazionale Galileo (TNG) operated on the island of La Palma bythe Fundacion Galileo Galilei of the INAF (Istituto Nazionale diAstrofisica) at the Spanish Observatorio del Roque de los Muchachos ofthe Instituto de Astrofisica de Canarias.

Globular cluster system and Milky Way properties revisited
Aims.Updated data of the 153 Galactic globular clusters are used toreaddress fundamental parameters of the Milky Way, such as the distanceof the Sun to the Galactic centre, the bulge and halo structuralparameters, and cluster destruction rates. Methods: .We build areduced sample that has been decontaminated of all the clusters youngerthan 10 Gyr and of those with retrograde orbits and/or evidence ofrelation to dwarf galaxies. The reduced sample contains 116 globularclusters that are tested for whether they were formed in the primordialcollapse. Results: .The 33 metal-rich globular clusters([Fe/H]≥-0.75) of the reduced sample basically extend to the Solarcircle and are distributed over a region with the projected axial-ratiostypical of an oblate spheroidal, Δ x:Δ y:Δz≈1.0:0.9:0.4. Those outside this region appear to be related toaccretion. The 81 metal-poor globular clusters span a nearly sphericalregion of axial-ratios ≈1.0:1.0:0.8 extending from the central partsto the outer halo, although several clusters in the external regionstill require detailed studies to unravel their origin as accretion orcollapse. A new estimate of the Sun's distance to the Galactic centre,based on the symmetries of the spatial distribution of 116 globularclusters, is provided with a considerably smaller uncertainty than inprevious determinations using globular clusters, R_O=7.2±0.3 kpc.The metal-rich and metal-poor radial-density distributions flatten forR_GC≤2 kpc and are represented well over the full Galactocentricdistance range both by a power-law with a core-like term andSérsic's law; at large distances they fall off as ˜R-3.9. Conclusions: .Both metallicity components appearto have a common origin that is different from that of the dark matterhalo. Structural similarities between the metal-rich and metal-poorradial distributions and the stellar halo are consistent with a scenariowhere part of the reduced sample was formed in the primordial collapseand part was accreted in an early period of merging. This applies to thebulge as well, suggesting an early merger affecting the central parts ofthe Galaxy. The present decontamination procedure is not sensitive toall accretions (especially prograde) during the first Gyr, since theobserved radial density profiles still preserve traces of the earliestmerger(s). We estimate that the present globular cluster populationcorresponds to ≤23±6% of the original one. The fact that thevolume-density radial distributions of the metal-rich and metal-poorglobular clusters of the reduced sample follow both a core-likepower-law, and Sérsic's law indicates that we are dealing withspheroidal subsystems at all scales.

UBVI CCD Photometry of the Old Open Cluster Berkeley 17
Photometric UBVI CCD photometry is presented for NGC 188 and Berkeley17. Color-magnitude diagrams (CMDs) are constructed and reach well pastthe main-sequence turnoff for both clusters. Cluster ages are determinedby means of isochrone fitting to the cluster CMDs. These fits areconstrained to agree with spectroscopic metallicity and reddeningestimates. Cluster ages are determined to be 7.0+/-0.5 Gyr for NGC 188and 10.0+/-1.0 Gyr for Berkeley 17, where the errors refer touncertainties in the relative age determinations. These ages arecompared to the ages of relatively metal-rich inner halo/thick-diskglobular clusters and other old open clusters. Berkeley 17 and NGC 6791are the oldest open clusters, with ages of 10 Gyr. They are 2 Gyryounger than the thick-disk globular clusters. These results confirm thestatus of Berkeley 17 as one of the oldest known open clusters in theMilky Way, and its age provides a lower limit to the age of the Galacticdisk.

Nearby Spiral Globular Cluster Systems. I. Luminosity Functions
We compare the near-infrared (JHK) globular cluster luminosity functions(GCLFs) of the Milky Way, M31, and the Sculptor Group spiral galaxies.We obtained near-infrared photometry with the Persson's AuxiliaryNasmyth Infrared Camera on the Baade Telescope for 38 objects (mostlyglobular cluster candidates) in the Sculptor Group. We also havenear-infrared photometry from the Two Micron All Sky Survey (2MASS)-6Xdatabase for 360 M31 globular cluster candidates and aperture photometryfor 96 Milky Way globular cluster candidates from the 2MASS All-Sky andSecond Incremental Release databases. The M31 6X GCLFs peak at absolutereddening-corrected magnitudes of MJ0=-9.18,MH0=-9.73, and MK0=-9.98.The mean brightness of the Milky Way objects is consistent with that ofM31 after accounting for incompleteness. The average Sculptor absolutemagnitudes (correcting for relative distance from the literature andforeground reddening) are MJ0=-9.18,MH0=-9.70, and MK0=-9.80.NGC 300 alone has absolute foreground-dereddened magnitudesMJ0=-8.87, MH0=-9.39, andMK0=-9.46 using the newest Gieren et al. distance.This implies either that the NGC 300 GCLF may be intrinsically fainterthan that of the larger galaxy M31 or that NGC 300 may be slightlyfarther away than previously thought. Straightforward application of ourM31 GCLF results as a calibrator gives NGC 300 distance moduli of26.68+/-0.14 using J, 26.71+/-0.14 using H, and 26.89+/-0.14 using K.Data for this project were obtained at the Baade 6.5 m telescope, LasCampanas Observatory, Chile.

RR Lyrae-based calibration of the Globular Cluster Luminosity Function
We test whether the peak absolute magnitude MV(TO) of theGlobular Cluster Luminosity Function (GCLF) can be used for reliableextragalactic distance determination. Starting with the luminosityfunction of the Galactic Globular Clusters listed in Harris catalogue,we determine MV(TO) either using current calibrations of theabsolute magnitude MV(RR) of RR Lyrae stars as a function ofthe cluster metal content [Fe/H] and adopting selected cluster samples.We show that the peak magnitude is slightly affected by the adoptedMV(RR)-[Fe/H] relation, with the exception of that based onthe revised Baade-Wesselink method, while it depends on the criteria toselect the cluster sample. Moreover, grouping the Galactic GlobularClusters by metallicity, we find that the metal-poor (MP) ([Fe/H]<-1.0, <[Fe/H]>~-1.6) sample shows peak magnitudes systematicallybrighter by about 0.36mag than those of the metal-rich (MR) ([Fe/H]>-1.0, (<[Fe/H]>~-0.6) one, in substantial agreement with thetheoretical metallicity effect suggested by synthetic Globular Clusterpopulations with constant age and mass function. Moving outside theMilky Way, we show that the peak magnitude of the MP clusters in M31appears to be consistent with that of Galactic clusters with similarmetallicity, once the same MV(RR)-[Fe/H] relation is used fordistance determination. As for the GCLFs in other external galaxies,using Surface Brightness Fluctuations (SBF) measurements we giveevidence that the luminosity functions of the blue (MP) GlobularClusters peak at the same luminosity within ~0.2mag, whereas for the red(MR) samples the agreement is within ~0.5mag even accounting for thetheoretical metallicity correction expected for clusters with similarages and mass distributions. Then, using the SBF absolute magnitudesprovided by a Cepheid distance scale calibrated on a fiducial distanceto Large Magellanic Cloud (LMC), we show that the MV(TO)value of the MP clusters in external galaxies is in excellent agreementwith the value of both Galactic and M31 ones, as inferred by an RR Lyraedistance scale referenced to the same LMC fiducial distance. Eventually,adopting μ0(LMC) = 18.50mag, we derive that the luminosityfunction of MP clusters in the Milky Way, M31, and external galaxiespeak at MV(TO) =-7.66 +/- 0.11, - 7.65 +/- 0.19 and -7.67 +/-0.23mag, respectively. This would suggest a value of -7.66 +/- 0.09mag(weighted mean), with any modification of the LMC distance modulusproducing a similar variation of the GCLF peak luminosity.

Completing the census of (bright) variable stars in galactic globular clusters .
We present a long-term project aimed at completing the census of(bright) variable stars in Galactic globular clusters. While our mainaim is to obtain a reliable assessment of the populations of RR Lyraeand type II Cepheid stars in the Galactic globular cluster system, dueattention is also being paid to other types of variables, including SXPhoenicis stars, long-period variables, and eclipsing binaries.

NGC 6304: a metal rich cluster with RR Lyrae?.
We have carried out a new search for variable stars in the metal-richbulge globular cluster NGC 6304 ([Fe/H] = -0.59) using CCD observationsobtained at CTIO. We used two data sets: one was taken on the 0.9m inMay and June of 1996, and the second was taken on the 1m Yalo telescopein February and March of 2002. We have identified and obtained BVI lightcurves for 11 RR Lyrae stars, including 6 RRab and 5 RRc stars withinthe tidal radius of the cluster, and partial light curves for severallong-period variables. Most of the RR Lyrae stars had been previouslydiscovered, although not always recognized to be RR Lyrae typevariables. We are able to exclude several RR Lyrae stars as probablefield stars. In light of the large number of long-period RRab starsrecently discovered within the metal-rich globular clusters NGC 6388 andNGC 6441, it is noteworthy that two of the possible RRab have periodsgreater than 0.8 days. The nature of these long-period RR Lyrae and thequestion of their membership will be discussed.

Resolved Massive Star Clusters in the Milky Way and Its Satellites: Brightness Profiles and a Catalog of Fundamental Parameters
We present a database of structural and dynamical properties for 153spatially resolved star clusters in the Milky Way, the Large and SmallMagellanic Clouds, and the Fornax dwarf spheroidal. This databasecomplements and extends others in the literature, such as those ofHarris and Mackey & Gilmore. Our cluster sample comprises 50 ``youngmassive clusters'' in the LMC and SMC, and 103 old globular clustersbetween the four galaxies. The parameters we list include central andhalf-light-averaged surface brightnesses and mass densities; core andeffective radii; central potentials, concentration parameters, and tidalradii; predicted central velocity dispersions and escape velocities;total luminosities, masses, and binding energies; central phase-spacedensities; half-mass relaxation times; and ``κ-space'' parameters.We use publicly available population-synthesis models to computestellar-population properties (intrinsic B-V colors, reddenings, andV-band mass-to-light ratios) for the same 153 clusters plus another 63globulars in the Milky Way. We also take velocity-dispersionmeasurements from the literature for a subset of 57 (mostly old)clusters to derive dynamical mass-to-light ratios for them, showing thatthese compare very well to the population-synthesis predictions. Thecombined data set is intended to serve as the basis for futureinvestigations of structural correlations and the fundamental plane ofmassive star clusters, including especially comparisons between thesystemic properties of young and old clusters.The structural and dynamical parameters are derived from fitting threedifferent models-the modified isothermal sphere of King; an alternatemodified isothermal sphere based on the ad hoc stellar distributionfunction of Wilson; and asymptotic power-law models withconstant-density cores-to the surface-brightness profile of eachcluster. Surface-brightness data for the LMC, SMC, and Fornax clustersare based in large part on the work of Mackey & Gilmore, but includesignificant supplementary data culled from the literature and importantcorrections to Mackey & Gilmore's V-band magnitude scale. Theprofiles of Galactic globular clusters are taken from Trager et al. Weaddress the question of which model fits each cluster best, finding inthe majority of cases that the Wilson models-which are spatially moreextended than King models but still include a finite, ``tidal'' cutoffin density-fit clusters of any age, in any galaxy, as well as or betterthan King models. Untruncated, asymptotic power laws often fit about aswell as Wilson models but can be significantly worse. We argue that theextended halos known to characterize many Magellanic Cloud clusters maybe examples of the generic envelope structure of self-gravitating starclusters, not just transient features associated strictly with youngage.

A Library of Integrated Spectra of Galactic Globular Clusters
We present a new library of integrated spectra of 40 Galactic globularclusters, obtained with the Blanco 4 m telescope and the R-Cspectrograph at the Cerro Tololo Inter-American Observatory. The spectracover the range ~3350-6430 Å with ~3.1 Å (FWHM) resolution.The spectroscopic observations and data reduction were designed tointegrate the full projected area within the cluster core radii in orderto properly sample the light from stars in all relevant evolutionarystages. The S/N values of the flux-calibrated spectra range from 50 to240 Å-1 at 4000 Å and from 125 to 500Å-1 at 5000 Å. The selected targets span a widerange of cluster parameters, including metallicity, horizontal-branchmorphology, Galactic coordinates, Galactocentric distance, andconcentration. The total sample is thus fairly representative of theentire Galactic globular cluster population and should be valuable forcomparison with similar integrated spectra of unresolved stellarpopulations in remote systems. For most of the library clusters, ourspectra can be coupled with deep color-magnitude diagrams and reliablemetal abundances from the literature to enable the calibration ofstellar population synthesis models. In this paper we present a detailedaccount of the observations and data reduction. The spectral library ispublicly available in electronic format from the National OpticalAstronomical Observatory Web site.

Near-infrared photometry of four metal-rich bulge globular clusters: NGC 6304, 6569, 6637 and 6638*
We present high-quality near-infrared (near-IR) photometry of four bulgemetal-rich globular clusters, namely NGC 6304, 6569, 6637 and 6638. Byusing the observed colour-magnitude diagrams we derived photometricestimates of the cluster reddening and distance. We performed a detailedanalysis of the red giant branch (RGB), presenting a completedescription of its morphologic parameters and evolutionary features(bump and tip). Photometric estimates of the cluster metallicity wereobtained using the updated data set (published by our group) linkingmetal abundance to a variety of near-IR indices measured along the RGB.The detection of the RGB bump and tip is also presented and brieflydiscussed.

Comparing the properties of local globular cluster systems: implications for the formation of the Galactic halo
We investigate the hypothesis that some fraction of the globularclusters presently observed in the Galactic halo formed in externaldwarf galaxies. This is done by means of a detailed comparison betweenthe `old halo', `young halo' and `bulge/disc' subsystems defined by Zinnand the globular clusters in the Large Magellanic Cloud, SmallMagellanic Cloud, and Fornax and Sagittarius dwarf spheroidal galaxies.We first use high-quality photometry from Hubble Space Telescope imagesto derive a complete set of uniform measurements of horizontal branch(HB) morphology in the external clusters. We also compile structural andmetallicity measurements for these objects and update the data base ofsuch measurements for the Galactic globular clusters, including newcalculations of HB morphology for 11 objects. Using these data togetherwith recent measurements of globular cluster kinematics and ages weexamine the characteristics of the three Galactic cluster subsystems.Each is quite distinct in terms of their spatial and age distributions,age-metallicity relationships, and typical orbital parameters, althoughwe observe some old halo clusters with ages and orbits more similar tothose of young halo objects. In addition, almost all of the Galacticglobular clusters with large core radii fall into the young halosubsystem, while the old halo and bulge/disc ensembles are characterizedby compact clusters. We demonstrate that the majority of the externalglobular clusters are essentially indistinguishable from the Galacticyoung halo objects in terms of HB morphology, but ~20-30 per cent ofexternal clusters have HB morphologies most similar to the Galactic oldhalo clusters. We further show that the external clusters have adistribution of core radii which very closely matches that for the younghalo objects. The old halo distribution of core radii can be very wellrepresented by a composite distribution formed from ~83-85 per cent ofobjects with structures typical of bulge/disc clusters, and ~15-17 percent of objects with structures typical of external clusters. Takentogether our results fully support the accretion hypothesis. We concludethat all 30 young halo clusters and 15-17 per cent of the old haloclusters (10-12 objects) are of external origin. Based on cluster numbercounts, we estimate that the Galaxy may have experienced approximatelyseven merger events with cluster-bearing dwarf-spheroidal-type galaxiesduring its lifetime, building up ~45-50 per cent of the mass of theGalactic stellar halo. Finally, we identify a number of old halo objectswhich have properties characteristic of accreted clusters. Several ofthe clusters associated with the recently proposed dwarf galaxy in CanisMajor fall into this category.

RR Lyrae Variables in Galactic Globular Clusters
RR Lyrae variables are the cornerstone of the Population II distancescale, and yet our knowledge of the RR Lyrae variable star content inGalactic globular clusters is now known to be surprisingly incomplete.In the present paper, we present our new results in this area.Highlights of our work includes: i) The discovery of a vast number ofvariable stars in M62 (NGC 6266), making it one of the three most RRLyrae-rich globular clusters known, and also placing it as Oosterhofftype I in spite of a blue horizontal branch morphology; ii) Thedetermination of light curves and Oosterhoff types for globular clustersassociated with the Sagittarius dSph galaxy, including NGC 5634, Arp 2,and Terzan 8; iii) A reassessment of the variable star content in themoderately metal-rich globular clusters M69 and NGC 6304; iv) The firsttheoretical calibration of the RR Lyrae period-luminosity-metallicityrelation in I, J, and H, as well as an updated calibration of the K-bandrelation---along with comparisons against the empirical data,particularly in I.This project was supported in part by Proyecto Fondecyt Regular 1030954.

Ages and metallicities of star clusters: New calibrations and diagnostic diagrams from visible integrated spectra
We present homogeneous scales of ages and metallicities for starclusters from very young objects, through intermediate-age ones up tothe oldest known clusters. All the selected clusters have integratedspectra in the visible range, as well as reliable determinations oftheir ages and metallicities. From these spectra equivalent widths (EWs)of K Ca II, G band (CH) and Mg I metallic, and Hδ, Hγ andHβ Balmer lines have been measured homogeneously. The analysis ofthese EWs shows that the EW sums of the metallic and Balmer H lines,separately, are good indicators of cluster age for objects younger than10 Gyr, and that the former is also sensitive to cluster metallicity forages greater than 10 Gyr. We propose an iterative procedure forestimating cluster ages by employing two new diagnostic diagrams and agecalibrations based on the above EW sums. For clusters older than 10 Gyr,we also provide a calibration to derive their overall metal contents.

Infrared Echelle Spectroscopy of Palomar 6 and M71
We present high-resolution infrared echelle spectroscopy for theglobular clusters Palomar 6 and M71. Our mean heliocentric radialvelocity of Pal 6 is +180.6+/-3.2 km s-1 and is 20 kms-1 lower than that found by Minniti in 1995. Contrary to theprevious metallicity estimates using low-resolution spectroscopy, ourresults show that Pal 6 has an intermediate metallicity, with[Fe/H]=-1.0+/-0.1, and is slightly more metal poor than M71. Reasonablechanges in the surface temperature or the microturbulent velocity of themodel atmospheres do not affect [Fe/H] at more than +/-0.2 dex. In spiteof its high metallicity, on the basis of the spectrum of a singlecluster member the [Si/Fe] and [Ti/Fe] ratios of Pal 6 appear to beenhanced by 0.4 and 0.5 dex, respectively, suggesting that the Galacticinner halo may have experienced a very rapid chemical enrichmenthistory.Based on observations made with the Infrared Telescope Facility, whichis operated by the University of Hawaii under contract to the NationalAeronautics and Space Administration.

The initial helium abundance of the Galactic globular cluster system
In this paper we estimate the initial He content in about 30% of theGalactic globular clusters (GGCs) from new star counts we have performedon the recently published HST snapshot database of Colour MagnitudeDiagrams (Piotto et al. \cite{Piotto02}). More specifically, we use theso-called R-parameter and estimate the He content from a theoreticalcalibration based on a recently updated set of stellar evolution models.We performed an accurate statistical analysis in order to assess whetherGGCs show a statistically significant spread in their initial Heabundances, and whether there is a correlation with the clustermetallicity. As in previous works on the subject, we do not find anysignificant dependence of the He abundance on the cluster metallicity;this provides an important constraint for models of Galaxy formation andevolution. Apart from GGCs with the bluest Horizontal Branch morphology,the observed spread in the individual helium abundances is statisticallycompatible with the individual errors. This means that either there isno intrinsic abundance spread among the GGCs, or that this is masked bythe errors. In the latter case we have estimated a firm 1σ upperlimit of 0.019 to the possible intrinsic spread. In case of the GGCswith the bluest Horizontal Branch morphology we detect a significantspread towards higher abundances inconsistent with the individualerrors; this can be fully explained by additional effects not accountedfor in our theoretical calibrations, which do not affect the abundancesestimated for the clusters with redder Horizontal Branch morphology. Inthe hypothesis that the intrinsic dispersion on the individual Heabundances is zero, taking into account the errors on the individualR-parameter estimates, as well as the uncertainties on the clustermetallicity scale and theoretical calibration, we have determined aninitial He abundance mass fraction YGGC=0.250±0.006.This value is in perfect agreement with current estimates based onCosmic Microwave Background radiation analyses and cosmologicalnucleosynthesis computations.Based on observations with the NASA/ESA Hubble Space Telescope, obtainedat the Space Telescope Science Institute, which is operated by AURA,Inc., under NASA contract NAS5-26555, and on observations retrieved withthe ESO ST-ECF Archive.

The Impact of Space Experiments on our Knowledge of the Physics of the Universe
With the advent of space experiments it was demonstrated that cosmicsources emit energy practically across all the electromagnetic spectrumvia different physical processes. Several physical quantities givewitness to these processes which usually are not stationary; thosephysical observable quantities are then generally variable. Thereforesimultaneous multifrequency observations are strictly necessary in orderto understand the actual behaviour of cosmic sources. Space experimentshave opened practically all the electromagnetic windows on the Universe.A discussion of the most important results coming from multifrequencyphotonic astrophysics experiments will provide new inputs for theadvance of the knowledge of the physics, very often in its more extremeconditions. A multitude of high quality data across practically thewhole electromagnetic spectrum came at the scientific community'sdisposal a few years after the beginning of the Space Era. With thesedata we are attempting to explain the physics governing the Universeand, moreover, its origin, which has been and still is a matter of thegreatest curiosity for humanity. In this paper we will try to describethe last steps of the investigation born with the advent of spaceexperiments, to note upon the most important results and open problemsstill existing, and to comment upon the perspectives we can reasonablyexpect. Once the idea of this paper was well accepted by ourselves, wehad the problem of how to plan the exposition. Indeed, the exposition ofthe results can be made in different ways, following several points ofview, according to: - a division in diffuse and discrete sources; -different classes of cosmic sources; - different spectral ranges, whichimplies in turn a sub-classification in accordance with differenttechniques of observations; - different physical emission mechanisms ofelectromagnetic radiation; - different vehicles used for launching theexperiments (aircraft, balloons, rockets, satellites, observatories). Inorder to exhaustively present The Impact of Space Experiments on ourKnowledge of the Physics of the Universe it would then have beennecessary to write a kind of Encyclopaedia of the Astronomical SpaceResearch, which is not our desire. On the contrary, since our goal is toprovide an useful tool for the reader who has not specialized in spaceastrophysics and for the students, we decided to write this paper in theform of a review, the length of which can be still consideredreasonable, taking into account the complexity of the argumentsdiscussed. Because of the impossibility of realizing a complete pictureof the physics governing the Universe, we were obliged to select how toproceed, the subjects to be discussed the more or the less, or those tobe rejected. Because this work was born in the Ph.D. thesis of one of us(LSG) (Sabau-Graziati, 1990) we decided to follow the `astronomicaltradition' used there, namely: the spectral energy ranges. Although suchenergy ranges do not determine physical objects (even if in many casessuch ranges are used to define the sources as: radio, infrared, optical,ultraviolet, X-ray, γ-ray emitters), they do determine themethods of study, and from the technical point of view they define thetechnology employed in the relative experiments. However, since then wehave decided to avoid a deep description of the experiments, satellites,and observatories, simply to grant a preference to the physical results,rather than to technologies, however fundamental for obtaining thoseresults. The exposition, after an introduction (Section 1) and somecrucial results from space astronomy (Section 2), has been focussed intothree parts: the physics of the diffuse cosmic sources deduced fromspace experiments (Section 3), the physics of cosmic rays from ground-and space-based experiments (Section 4), and the physics of discretecosmic sources deduced from space experiments (Section 5). In this firstpart of the paper we have used the logic of describing the main resultsobtained in different energy ranges, which in turn characterize theexperiments on board space vehicles. Within each energy range we havediscussed the contributions to the knowledge of various kind of cosmicsources coming from different experiments. And this part is mainlyderived by the bulk of the introductory part of LSG's Ph.D. thesis. Inthe second part of the paper, starting from Section 6, we have preferredto discuss several classes of cosmic sources independently of the energyranges, mainly focussing the results from a multifrequency point ofview, making a preference for the knowledge of the physics governing thewhole class. This was decided also because of the multitude of new spaceexperiments launched in the last fifteen years, which would haverendered almost impossible a discussion of the results divided intoenergy ranges without weakening the construction of the entire puzzle.We do not pretend to cover every aspect of every subject consideredunder the heading of the physics of the universe. Instead a crosssection of essays on historical, modern, and philosophical topics areoffered and combined with personal views into tricks of the spaceastrophysics trade. The reader is, then, invited to accept this papereven though it obviously lacks completeness and the arguments discussedare certainly biased by a selection effect owed essentially to ourknowledge, and to it being of a reasonable length. Some parts of itcould seem, in certain sense, to belong to an older paper, in which the`news' is not reported. But this is owed to our own choice, just in fullaccord with the goals of the text: we want to present those resultswhich have, in our opinion, been really important, in the development ofthe science. These impacting results do not necessarily constitute thelast news. This text was formally closed just on the day of the launchof the INTEGRAL satellite: October 17, 2002. After that date onlyfinishing touches have been added.

Globular Clusters as Candidates for Gravitational Lenses to Explain Quasar-Galaxy Associations
We argue that globular clusters (GCs) are good candidates forgravitational lenses in explaining quasar-galaxy associations. Thecatalog of associations (Bukhmastova 2001) compiled from the LEDAcatalog of galaxies (Paturel 1997) and from the catalog of quasars(Veron-Cetty and Veron 1998) is used. Based on the new catalog, we showthat one might expect an increased number of GCs around irregulargalaxies of types 9 and 10 from the hypothesis that distant compactsources are gravitationally lensed by GCs in the halos of foregroundgalaxies. The King model is used to determine the central surfacedensities of 135 GCs in the Milky Way. The distribution of GCs incentral surface density was found to be lognormal.

Space Velocities of Southern Globular Clusters. IV. First Results for Inner Galaxy Clusters
We have measured the absolute proper motions of four low-latitude, innerGalaxy globular clusters. These clusters are NGC 6266 (M62), NGC 6304,NGC 6316, and NGC 6723. The proper motions are on the Hipparcos system,since no background extragalactic objects are found in thesehigh-extinction regions. The proper-motion uncertainties range between0.3 and 0.6 mas yr-1. We discuss the kinematics of theseclusters and of three additional bulge clusters-NGC 6522, NGC 6528, andNGC 6553-whose proper motions with respect to bulge stars had beendetermined previously. We find that all of the clusters have velocitiesthat confine them to the bulge region. Of the three metal-poor clusters([Fe/H]<-1.0), NGC 6522, and NGC 6723 have kinematics consistent withhalo membership. The third cluster, NGC 6266 however, appears to belongto a rotationally supported system. Of the four metal-rich clusters([Fe/H]>=-1.0), NGC 6304 and NGC 6553 also have kinematics consistentwith membership to a rotationally supported system. NGC 6528 haskinematics, metallicity, and mass that argue in favor of a genuine MilkyWay bar cluster. NGC 6316's kinematics indicate membership to a hottersystem than the bar.

A Globular Cluster Metallicity Scale Based on the Abundance of Fe II
Assuming that in the atmospheres of low-mass, metal-poor red giantstars, one-dimensional models based on local thermodynamic equilibriumaccurately predict the abundance of iron from Fe II, we derive aglobular cluster metallicity scale based on the equivalent widths of FeII lines measured from high-resolution spectra of giants in 16 keyclusters lying in the abundance range-2.4<[Fe/H]II<-0.7. We base the scale largely on theanalysis of spectra of 149 giant stars in 11 clusters by the Lick-Texasgroup supplemented by high-resolution studies of giants in five otherclusters. We also derive ab initio the true distance moduli for certainkey clusters (M5, M3, M13, M92, and M15) as a means of setting stellarsurface gravities. Allowances are made for changes in the abundancescale if one employs (1) Kurucz models with and without convectiveovershooting to represent giant star atmospheres in place of MARCSmodels and (2) the Houdashelt et al. color-temperature scale in place ofthe Alonso et al. scale.We find that [Fe/H]II is correlated linearly withW', the reduced strength of the near-infrared Ca II tripletdefined by Rutledge et al., although the actual correlation coefficientsdepend on the atmospheric model employed. The correlations, limited tothe range -2.4<[Fe/H]II<-0.7, are as follows:1.[Fe/H]II=0.531W'-3.279(MARCS),2.[Fe/H]II=0.537W'-3.225 (Kurucz withconvective overshooting),3.[Fe/H]II=0.562W'-3.329 (Kurucz withoutconvective overshooting).We also discuss how to estimate [X/Fe] ratios. We suggest that C, N, andO, as well as elements appearing in the spectrum in the singly ionizedstate, e.g., Ti, Sc, Ba, La, and Eu, should be normalized to theabundance of Fe II. Other elements, which appear mostly in the neutralstate, but for which the dominant species is nevertheless the ionizedstate, are probably best normalized to Fe I, but uncertainties remain.

RR Lyrae Stars in the Globular Cluster NGC 6304
Not Available

HST color-magnitude diagrams of 74 galactic globular clusters in the HST F439W and F555W bands
We present the complete photometric database and the color-magnitudediagrams for 74 Galactic globular clusters observed with the HST/WFPC2camera in the F439W and F555W bands. A detailed discussion of thevarious reduction steps is also presented, and of the procedures totransform instrumental magnitudes into both the HST F439W and F555Wflight system and the standard Johnson ( B ) and ( V ) systems. We alsodescribe the artificial star experiments which have been performed toderive the star count completeness in all the relevant branches of thecolor magnitude diagram. The entire photometric database and thecompleteness function will be made available on the Web immediatelyafter the publication of the present paper. Based on observations withthe NASA/ESA Hubble Space Telescope, obtained at the Space TelescopeScience Institute, which is operated by AURA, Inc., under NASA contractNAS5-26555, and on observations retrieved from the ESO ST-ECF Archive.

On the Observational Properties of He-burning Stars: Some Clues on the Tilt of the Horizontal Branch in Metal-rich Clusters
We investigate the predicted color-magnitude distribution of metal-richhorizontal-branch (HB) stars, discussing selected theoretical modelscomputed under various assumptions about the star metallicity and theefficiency of superadiabatic convection. We find that canonical zero-agehorizontal branches with metallicity larger or of the order of Z=0.002should all be affected by a tilt by an amount that increases when themetallicity is increased and/or the mixing length is decreased, reachinga tilt of ΔV~0.2 mag in the case of solar metallicity when amixing-length value α=1.6 is assumed (ΔV is the magnitudedifference between the top of the blue HB and the fainter magnitudereached by the red HB). Uncertainties in the luminosity of the red HBdue to uncertainty in the mixing-length value are discussed. We finallydiscuss the much larger tilt observed in the clusters NGC 6441 and NGC6388, reporting additional evidence against suggested noncanonicalevolutionary scenarios. Numerical experiments show that differentialreddening could produce such sloped HBs. Furthermore, Hubble SpaceTelescope planetary-camera imaging of NGC 6441 gives clear indicationsof the occurrence of differential reddening across the cluster. However,the same imaging shows that the observed slope of the red HB is not anartifact of differential reddening. We finally show that sloping red HBsin metal-rich clusters are a common occurrence not necessarilycorrelated with the appearance of extended blue HBs.

New Planetary Nebulae towards the galactic bulge. II. Objects surrounding the central area
In the second part of the objective-prism survey of PNe towards thegalactic centre we present the discovery of further 44 new planetarynebulae found in six ESO fields surrounding the central area and give arough description of these objects. Besides, we give coordinates of manyknown objects in the area of the survey. The discussion of the angulardiameters leads to the belief that the majority of our PNe is veryprobably located in or close to the galactic bulge.

Variable Stars in Galactic Globular Clusters
Based on a search of the literature up to 2001 May, the number of knownvariable stars in Galactic globular clusters is approximately 3000. Ofthese, more than 2200 have known periods and the majority (approximately1800) are of the RR Lyrae type. In addition to the RR Lyrae population,there are approximately 100 eclipsing binaries, 120 SX Phoenicisvariables, 60 Cepheids (including Population II Cepheids, anomalousCepheids and RV Tauri), and 120 SR/red variables. The mean period of thefundamental mode RR Lyrae variables is 0.585 days, for the overtonevariables it is 0.342 days (0.349 days for the first-overtone pulsatorsand 0.296 days for the second-overtone pulsators) and approximately 30%are overtone pulsators. These numbers indicate that about 65% of RRLyrae variables in Galactic globular clusters belong to Oosterhoff typeI systems. The mean period of the RR Lyrae variables in the Oosterhofftype I clusters seems to be correlated with metal abundance in the sensethat the periods are longer in the more metal poor clusters. Such acorrelation does not exist for the Oosterhoff type II clusters. Most ofthe Cepheids are in clusters with blue horizontal branches.

Sottometti un nuovo articolo


Link relazionati

  • - Nessun link trovato -
Sottometti un nuovo link


Membro dei seguenti gruppi:


Osservazione e dati astrometrici

Costellazione:Ofiuco
Ascensione retta:17h14m32.51s
Declinazione:-29°27'44.2"
Magnitudine apparente:8.4

Cataloghi e designazioni:
Nomi esatti
NGC 2000.0NGC 6304

→ Richiesta di ulteriori cataloghi da VizieR